Abstract

In [1], Hjorth proved that for every countable ordinal α , there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} that has models of all cardinalities less than or equal to \aleph_{α} , but no models of cardinality $\aleph_{\alpha+1}$. Unfortunately, his solution yields not one $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences, one of which is guaranteed to work.

The following is new: It is independent of the axioms of ZFC which of the Hjorth sentences works. More specifically, we isolate a diagonalization principle for functions from ω_1 to ω_1 which is a consequence of the *Bounded Proper Forcing Axiom* (BPFA) and then we use this principle to prove that Hjorth's solution to characterizing \aleph_2 in models of BPFA is different than in models of CH.

This raises the question whether Hjorth's result can be proved in an *absolute way* and what exactly this means, which we will discuss at the end of the talk.

This is joint work with Philipp Lücke.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

References

Greg Hjorth.

Knight's model, its automorphism group, and characterizing the uncountable cardinals. *J. Math. Log.*, 2(1):113-144, 2002.

Philipp Lücke, Ioannis Souldatos,

A lower bound for the hanf number for joint embedding. https://arxiv.org/abs/2109.07310

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characterizing Cardinals by $\mathcal{L}_{\omega_1,\omega}$ -sentences in an Absolute Way

Logic Colloquium 2022

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト ・雪ト ・雪ト ・雪ト ・日ト

History of the Problem

Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction

Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

This is a joint project with Philipp Lücke.

Disclaimer: Some theorems are given without reference. I will skip most proofs in this talk.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction

Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

This is a joint project with Philipp Lücke. Disclaimer: Some theorems are given without reference. I will skip most proofs in this talk.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

This is a joint project with Philipp Lücke. Disclaimer: Some theorems are given without reference. I will skip most proofs in this talk.

- 1. An $\mathcal{L}_{\omega_1,\omega}$ sentence ϕ characterizes some cardinal κ , if ϕ has models in all cardinalities $[\aleph_0, \kappa]$ but no higher.
- A countable model *M* characterizes some cardinal κ, if the same is true for its Scott Sentence.

I. Souldatos

History of the Problem

Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

- 1. An $\mathcal{L}_{\omega_1,\omega}$ sentence ϕ characterizes some cardinal κ , if ϕ has models in all cardinalities $[\aleph_0, \kappa]$ but no higher.
- 2. A countable model \mathcal{M} characterizes some cardinal κ , if the same is true for its Scott Sentence.

I. Souldatos

History of the Problem

Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Theorem

For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1,\omega}$ - sentence ϕ_{α} which has models in all cardinalities $[\aleph_0, \aleph_{\alpha}]$ but no higher (ϕ_{α} characterizes \aleph_{α}).

Remark: Hjorth's result is in ZFC and it is optimal.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト ・ 聞 ・ ・ 聞 ・ ・ 同 ・ うらぐ

Theorem

For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1,\omega}$ - sentence ϕ_{α} which has models in all cardinalities $[\aleph_0, \aleph_{\alpha}]$ but no higher $(\phi_{\alpha} \text{ characterizes } \aleph_{\alpha})$.

Remark: Hjorth's result is in ZFC and it is optimal.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Theorem

For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1,\omega}$ - sentence ϕ_{α} which has models in all cardinalities $[\aleph_0, \aleph_{\alpha}]$ but no higher $(\phi_{\alpha} \text{ characterizes } \aleph_{\alpha})$.

Remark: Hjorth's result is in ZFC and it is optimal.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Theorem

For all $\alpha < \omega_1$, there exists some complete $\mathcal{L}_{\omega_1,\omega}$ - sentence ϕ_{α} which has models in all cardinalities $[\aleph_0, \aleph_{\alpha}]$ but no higher $(\phi_{\alpha} \text{ characterizes } \aleph_{\alpha})$.

Remark: Hjorth's result is in ZFC and it is optimal.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Since Hjorth there have been a few similar results.

Theorem (Baldwin, Koerwien, Laskowski(BKL)) For every $n \in \omega$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence of which characterizes \aleph_n .

However, Hjorth's construction is the only one known to work all \aleph_{α} 's, $\alpha < \omega_1$. So, for the rest of the talk we will focus on Hjorth's construction. Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

Since Hjorth there have been a few similar results. Theorem (Baldwin, Koerwien, Laskowski(BKL)) For every $n \in \omega$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_n which characterizes \aleph_n .

However, Hjorth's construction is the only one known to work all \aleph_{α} 's, $\alpha < \omega_1$. So, for the rest of the talk we will focus on Hjorth's construction.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

Since Hjorth there have been a few similar results. Theorem (Baldwin, Koerwien, Laskowski(BKL)) For every $n \in \omega$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_n which characterizes \aleph_n .

However, Hjorth's construction is the only one known to work all \aleph_{α} 's, $\alpha < \omega_1$. So, for the rest of the talk we will focus on Hjorth's construction.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

Since Hjorth there have been a few similar results.

Theorem (Baldwin, Koerwien, Laskowski(BKL))

For every $n \in \omega$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_n which characterizes \aleph_n .

However, Hjorth's construction is the only one known to work all \aleph_{α} 's, $\alpha < \omega_1.$

So, for the rest of the talk we will focus on Hjorth's construction.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへぐ

Since Hjorth there have been a few similar results.

Theorem (Baldwin, Koerwien, Laskowski(BKL))

For every $n \in \omega$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_n which characterizes \aleph_n .

However, Hjorth's construction is the only one known to work all \aleph_{α} 's, $\alpha < \omega_1$.

So, for the rest of the talk we will focus on Hjorth's construction.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence φ which characterizes
 ℵ_α, Hjorth's first construction yields a complete
 sentence which characterizes either ℵ_α or ℵ_{α+1}.
- ▶ If the latter is the case, we are done.
- ▶ If not, then Hjorth introduces his second construction.
- If Hjorth's first construction characterizes ℵ_α, then Hjorth's second construction characterizes ℵ_{α+1}.
- Notice here that the failure of the first construction to characterize ℵ_{α+1} is used to prove that the second Hjorth construction does indeed characterize ℵ_{α+1}.
- In either case, there exists some L_{ω1,ω}-sentence that characterizes ℵ_{α+1} and the induction step is complete.

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence φ which characterizes ℵ_α, Hjorth's first construction yields a complete sentence which characterizes either ℵ_α or ℵ_{α+1}.
- If the latter is the case, we are done.
- ▶ If not, then Hjorth introduces his second construction.
- If Hjorth's first construction characterizes ℵ_α, then Hjorth's second construction characterizes ℵ_{α+1}.
- Notice here that the failure of the first construction to characterize ℵ_{α+1} is used to prove that the second Hjorth construction does indeed characterize ℵ_{α+1}.
- In either case, there exists some L_{ω1,ω}-sentence that characterizes ℵ_{α+1} and the induction step is complete.

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence φ which characterizes ℵ_α, Hjorth's first construction yields a complete sentence which characterizes either ℵ_α or ℵ_{α+1}.
- ▶ If the latter is the case, we are done.
- ▶ If not, then Hjorth introduces his second construction.
- If Hjorth's first construction characterizes ℵ_α, then Hjorth's second construction characterizes ℵ_{α+1}.
- Notice here that the failure of the first construction to characterize ℵ_{α+1} is used to prove that the second Hjorth construction does indeed characterize ℵ_{α+1}.
- In either case, there exists some L_{ω1,ω}-sentence that characterizes ℵ_{α+1} and the induction step is complete.

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence φ which characterizes ℵ_α, Hjorth's first construction yields a complete sentence which characterizes either ℵ_α or ℵ_{α+1}.
- ▶ If the latter is the case, we are done.
- ▶ If not, then Hjorth introduces his second construction.
- If Hjorth's first construction characterizes ℵ_α, then Hjorth's second construction characterizes ℵ_{α+1}.
- Notice here that the failure of the first construction to characterize ℵ_{α+1} is used to prove that the second Hjorth construction does indeed characterize ℵ_{α+1}.
- In either case, there exists some L_{ω1,ω}-sentence that characterizes ℵ_{α+1} and the induction step is complete.

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence φ which characterizes ℵ_α, Hjorth's first construction yields a complete sentence which characterizes either ℵ_α or ℵ_{α+1}.
- ▶ If the latter is the case, we are done.
- ▶ If not, then Hjorth introduces his second construction.
- If Hjorth's first construction characterizes ℵ_α, then Hjorth's second construction characterizes ℵ_{α+1}.
- Notice here that the failure of the first construction to characterize ℵ_{α+1} is used to prove that the second Hjorth construction does indeed characterize ℵ_{α+1}.
- In either case, there exists some L_{ω1,ω}-sentence that characterizes ℵ_{α+1} and the induction step is complete.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence φ which characterizes ℵ_α, Hjorth's first construction yields a complete sentence which characterizes either ℵ_α or ℵ_{α+1}.
- ▶ If the latter is the case, we are done.
- ▶ If not, then Hjorth introduces his second construction.
- If Hjorth's first construction characterizes ℵ_α, then Hjorth's second construction characterizes ℵ_{α+1}.
- Notice here that the failure of the first construction to characterize ℵ_{α+1} is used to prove that the second Hjorth construction does indeed characterize ℵ_{α+1}.
- In either case, there exists some L_{ω1,ω}-sentence that characterizes ℵ_{α+1} and the induction step is complete.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- Unfortunately, Hjorth describes not one, but two constructions in his paper.
- Given some complete sentence φ which characterizes ℵ_α, Hjorth's first construction yields a complete sentence which characterizes either ℵ_α or ℵ_{α+1}.
- ▶ If the latter is the case, we are done.
- ▶ If not, then Hjorth introduces his second construction.
- If Hjorth's first construction characterizes ℵ_α, then Hjorth's second construction characterizes ℵ_{α+1}.
- Notice here that the failure of the first construction to characterize ℵ_{α+1} is used to prove that the second Hjorth construction does indeed characterize ℵ_{α+1}.
- ► In either case, there exists some $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes $\aleph_{\alpha+1}$ and the induction step is complete.

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- ► S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ▶ So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.
- New result: The conjecture is true.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- ► S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ▶ So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.
- New result: The conjecture is true.

・ロト ・ 聞 ・ ・ 聞 ・ ・ 聞 ・ ・ 日 ・

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ▶ So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.
- ▶ New result: The conjecture is true.

・ロト・白マ・山下・山下・山下・

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ► So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.
- New result: The conjecture is true.

・ロト・白マ・山下・山下・山下・

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ▶ So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.
- New result: The conjecture is true.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ▶ So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.

New result: The conjecture is true.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ▶ So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.

New result: The conjecture is true.

・ロト・西ト・ヨト・ヨー うらぐ

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Therefore, Hjorth's solution does not yield a single $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} , but a set of $\mathcal{L}_{\omega_1,\omega}$ -sentences S_{α} , one of which is guaranteed to characterizes \aleph_{α} .
- \triangleright S_0 and S_1 are singletons.
- S_{α} is finite for finite α .
- For α = ω, iterating the first and the second construction ω-many times will yield a sentence that characterizes ℵ_ω, regardless of what cardinal each iteration characterizes.
- ▶ So, S_{ω} is also a singleton.
- Similarly, S_λ is a singleton for all limit λ and S_α is finite for all α < ω₁.
- It was conjectured that it is independent of the axioms of ZFC which of the sentences in S_α characterizes ℵ_α.
- New result: The conjecture is true.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

We briefly describe the first Hjorth construction.

Given: A countable model \mathcal{M} which characterizes \aleph_{α} . There exists a countable structure F with the following properties:

- F contains a complete countable graph G and (a copy of) M.
- 2. Every edge of G is colored by an element of M. Denote by C(a, b) = C(b, a) the color assigned to (a, b).
- 3. For $a, b \in G$, let $A^G(a, b) = \{c \in G | C(a, c) = C(b, c)\}$ (the set of agreements).
- 4. (Finite Agreement) For all $a, b \in G$, the set $A^G(a, b)$ is finite.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

We briefly describe the first Hjorth construction. Given: A countable model \mathcal{M} which characterizes \aleph_{α} .

There exists a countable structure *F* with the following properties:

- F contains a complete countable graph G and (a copy of) M.
- 2. Every edge of G is colored by an element of M. Denote by C(a, b) = C(b, a) the color assigned to (a, b).
- 3. For $a, b \in G$, let $A^G(a, b) = \{c \in G | C(a, c) = C(b, c)\}$ (the set of agreements).
- 4. (Finite Agreement) For all $a, b \in G$, the set $A^G(a, b)$ is finite.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本

We briefly describe the first Hjorth construction. Given: A countable model \mathcal{M} which characterizes \aleph_{α} . There exists a countable structure F with the following properties:

- 1. F contains a complete countable graph G and (a copy of) \mathcal{M} .
- 2. Every edge of G is colored by an element of M. Denote by C(a,b) = C(b,a) the color assigned to (a,b).
- 3. For $a, b \in G$, let $A^G(a, b) = \{c \in G | C(a, c) = C(b, c)\}$ (the set of agreements).
- (Finite Agreement) For all a, b ∈ G, the set A^G(a, b) is finite.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

We briefly describe the first Hjorth construction. Given: A countable model \mathcal{M} which characterizes \aleph_{α} . There exists a countable structure F with the following properties:

- 1. F contains a complete countable graph G and (a copy of) \mathcal{M} .
- 2. Every edge of G is colored by an element of M. Denote by C(a,b) = C(b,a) the color assigned to (a,b).
- 3. For $a, b \in G$, let $A^G(a, b) = \{c \in G | C(a, c) = C(b, c)\}$ (the set of agreements).
- (Finite Agreement) For all a, b ∈ G, the set A^G(a, b) is finite.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

We briefly describe the first Hjorth construction. Given: A countable model \mathcal{M} which characterizes \aleph_{α} . There exists a countable structure F with the following properties:

- 1. F contains a complete countable graph G and (a copy of) \mathcal{M} .
- 2. Every edge of G is colored by an element of M. Denote by C(a,b) = C(b,a) the color assigned to (a,b).
- 3. For $a, b \in G$, let $A^G(a, b) = \{c \in G | C(a, c) = C(b, c)\}$ (the set of agreements).
- (Finite Agreement) For all a, b ∈ G, the set A^G(a, b) is finite.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト ・西ト ・ヨト ・ヨト ・ ウタマ

We briefly describe the first Hjorth construction. Given: A countable model \mathcal{M} which characterizes \aleph_{α} . There exists a countable structure F with the following properties:

- 1. F contains a complete countable graph G and (a copy of) \mathcal{M} .
- 2. Every edge of G is colored by an element of M. Denote by C(a,b) = C(b,a) the color assigned to (a,b).
- 3. For $a, b \in G$, let $A^G(a, b) = \{c \in G | C(a, c) = C(b, c)\}$ (the set of agreements).
- 4. (Finite Agreement) For all $a, b \in G$, the set $A^G(a, b)$ is finite.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

- 5. (Finite Closure) For every X finite subset of G there exists some finite G_0 , $X \subset G_0$ and G_0 is closed under A^G .
- 6. (Finite Extension) If G_0 , G_1 are finite graphs with $G_0 \subseteq G$, $G_0 \subseteq G_1$ and G and G_1 introduce no new agreements to elements in G_0 , then there exists an injection $i: G_1 \mapsto G$ with $i \upharpoonright_{G_0} = id_{G_0}$ and $C^{G_1}(a, b) = C^G(i(a), i(b))$ for all $a, b \in G_1$.

 Call any structure that satisfies the Scott sentence of F an M-full structure.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- 5. (Finite Closure) For every X finite subset of G there exists some finite G_0 , $X \subset G_0$ and G_0 is closed under A^G .
- 6. (Finite Extension) If G_0 , G_1 are finite graphs with $G_0 \subseteq G$, $G_0 \subseteq G_1$ and G and G_1 introduce no new agreements to elements in G_0 , then there exists an injection $i: G_1 \mapsto G$ with $i \upharpoonright_{G_0} = id_{G_0}$ and $C^{G_1}(a, b) = C^G(i(a), i(b))$ for all $a, b \in G_1$.

 Call any structure that satisfies the Scott sentence of F an M-full structure.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- 5. (Finite Closure) For every X finite subset of G there exists some finite G_0 , $X \subset G_0$ and G_0 is closed under A^G .
- 6. (Finite Extension) If G_0 , G_1 are finite graphs with $G_0 \subseteq G$, $G_0 \subseteq G_1$ and G and G_1 introduce no new agreements to elements in G_0 , then there exists an injection $i: G_1 \mapsto G$ with $i \upharpoonright_{G_0} = id_{G_0}$ and $C^{G_1}(a, b) = C^G(i(a), i(b))$ for all $a, b \in G_1$.

Call any structure that satisfies the Scott sentence of F an M-full structure.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- 5. (Finite Closure) For every X finite subset of G there exists some finite G_0 , $X \subset G_0$ and G_0 is closed under A^G .
- 6. (Finite Extension) If G_0 , G_1 are finite graphs with $G_0 \subseteq G$, $G_0 \subseteq G_1$ and G and G_1 introduce no new agreements to elements in G_0 , then there exists an injection $i: G_1 \mapsto G$ with $i \upharpoonright_{G_0} = id_{G_0}$ and $C^{G_1}(a, b) = C^G(i(a), i(b))$ for all $a, b \in G_1$.

 Call any structure that satisfies the Scott sentence of F an M-full structure.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

The set M of colors is countable in the countable model, but may increase in other models (up to size \aleph_{α}).

Theorem

1. There exists an M-full structure size \aleph_{α}

2. Every M-full structure of size $lpha_{lpha+1}$ (if any) is maximal

3. Therefore there is no M-full structure of size $\aleph_{\alpha+2}$

The crucial point is whether there exists a model of size $\aleph_{\alpha+1}$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

The set M of colors is countable in the countable model, but may increase in other models (up to size \aleph_{α}).

Theorem

- 1. There exists an M-full structure size \aleph_{α} .
- 2. Every M-full structure of size $\aleph_{\alpha+1}$ (if any) is maximal.
- 3. Therefore there is no M-full structure of size $\aleph_{\alpha+2}$.

The crucial point is whether there exists a model of size $\aleph_{lpha+1}.$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

The set *M* of colors is countable in the countable model, but may increase in other models (up to size \aleph_{α}).

Theorem

1. There exists an M-full structure size \aleph_{α} .

- 2. Every M-full structure of size $\aleph_{\alpha+1}$ (if any) is maximal.
- 3. Therefore there is no M-full structure of size $\aleph_{\alpha+2}$.

The crucial point is whether there exists a model of size $leph_{lpha+1}.$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

The set M of colors is countable in the countable model, but may increase in other models (up to size \aleph_{α}).

Theorem

- 1. There exists an M-full structure size \aleph_{α} .
- 2. Every M-full structure of size $\aleph_{\alpha+1}$ (if any) is maximal.
- 3. Therefore there is no *M*-full structure of size $\aleph_{\alpha+2}$.

The crucial point is whether there exists a model of size $leph_{lpha+1}.$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

The set M of colors is countable in the countable model, but may increase in other models (up to size \aleph_{α}).

Theorem

- 1. There exists an M-full structure size \aleph_{α} .
- 2. Every M-full structure of size $\aleph_{\alpha+1}$ (if any) is maximal.
- 3. Therefore there is no M-full structure of size $\aleph_{\alpha+2}$.

The crucial point is whether there exists a model of size $leph_{lpha+1}.$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

The set M of colors is countable in the countable model, but may increase in other models (up to size \aleph_{α}).

Theorem

- 1. There exists an M-full structure size \aleph_{α} .
- 2. Every M-full structure of size $\aleph_{\alpha+1}$ (if any) is maximal.
- 3. Therefore there is no M-full structure of size $\aleph_{\alpha+2}$.

The crucial point is whether there exists a model of size $leph_{lpha+1}.$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

The set M of colors is countable in the countable model, but may increase in other models (up to size \aleph_{α}).

Theorem

- 1. There exists an M-full structure size \aleph_{α} .
- 2. Every M-full structure of size $\aleph_{\alpha+1}$ (if any) is maximal.
- 3. Therefore there is no M-full structure of size $\aleph_{\alpha+2}$.

The crucial point is whether there exists a model of size $\aleph_{\alpha+1}.$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Question

For $\alpha = 1$ is there an M-full structure of size \aleph_2 ?

Lemma

If CH holds and M characterizes \aleph_1 , then there is no M-full structure of size $\aleph_2.$

For the consistency of ZFC+ "there is an *M*-full structure of size \aleph_2 " we need more work.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Question

For $\alpha = 1$ is there an M-full structure of size \aleph_2 ?

Lemma

If CH holds and M characterizes \aleph_1 , then there is no M-full structure of size \aleph_2 .

For the consistency of ZFC+ "there is an *M*-full structure of size \aleph_2 " we need more work.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Question

For $\alpha = 1$ is there an M-full structure of size \aleph_2 ?

Lemma

If CH holds and M characterizes \aleph_1 , then there is no M-full structure of size \aleph_2 .

For the consistency of ZFC+ "there is an *M*-full structure of size \aleph_2 " we need more work.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Question

For $\alpha = 1$ is there an M-full structure of size \aleph_2 ?

Lemma

If CH holds and M characterizes \aleph_1 , then there is no M-full structure of size \aleph_2 .

For the consistency of ZFC+ "there is an *M*-full structure of size \aleph_2 " we need more work.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Question

For $\alpha = 1$ is there an M-full structure of size \aleph_2 ?

Lemma

If CH holds and M characterizes \aleph_1 , then there is no M-full structure of size \aleph_2 .

For the consistency of ZFC+ "there is an *M*-full structure of size \aleph_2 " we need more work.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Question

For $\alpha = 1$ is there an M-full structure of size \aleph_2 ?

Lemma

If CH holds and M characterizes \aleph_1 , then there is no M-full structure of size \aleph_2 .

For the consistency of ZFC+ "there is an *M*-full structure of size \aleph_2 " we need more work.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Property (\square)

We isolate a diagonalization property that we call (rad). Definition

- 1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is expansive if $a \subseteq m(a)$ holds for every finite subset a of X.

for every sequence $(f_{\alpha}: \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every expansive function $m: [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$, there exists a function $g: \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]^{<\omega}$, there exists $a \subseteq b \in [\omega_1]^{<\omega}$ with the property that

 $\{\beta < \omega_1 | f_\alpha(\beta) = g(\beta)\} \subseteq m(b)$

holds for all $lpha\in m(b)$. In addition, given some finite $F\subset \omega_1$, we require tha

$F \cap range(g) = \emptyset$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

- 1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is expansive if $a \subseteq m(a)$ holds for every finite subset a of X.
- 2. (4) denotes the statement: for every sequence $(f_{\alpha}: \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every expansive function $m: [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$, there exists a function $g: \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]^{<\omega}$, there exists $a \subseteq b \in [\omega_1]^{<\omega}$ with the property that

 $\{\beta < \omega_1 | f_\alpha(\beta) = g(\beta)\} \subseteq m(b)$

holds for all $lpha\in m(b).$ In addition, given some finite $F\subset \omega_1$, we require that

$F \cap range(g) = \emptyset.$

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

We isolate a diagonalization property that we call (\triangleleft). Definition

- 1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is expansive if $a \subseteq m(a)$ holds for every finite subset a of X.
- 2. (artinee) denotes the statement:

for every sequence $(f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$, there exists a function $g : \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]^{<\omega}$, there exists $a \subseteq b \in [\omega_1]^{<\omega}$ with the property that

 $\{\beta < \omega_1 | f_{\alpha}(\beta) = g(\beta)\} \subseteq m(b)$

holds for all $\alpha \in m(b)$.

In addition, given some finite $F \subset \omega_1$, we require that

 $F \cap range(g) = \emptyset.$

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

We isolate a diagonalization property that we call (\triangleleft). Definition

- 1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is expansive if $a \subseteq m(a)$ holds for every finite subset a of X.
- 2. (artinee) denotes the statement:

for every sequence $(f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$, there exists a function $g : \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]^{<\omega}$, there exists $a \subseteq b \in [\omega_1]^{<\omega}$ with the property that

 $\{\beta < \omega_1 | f_{\alpha}(\beta) = g(\beta)\} \subseteq m(b)$

holds for all $\alpha \in m(b)$.

In addition, given some finite $F \subset \omega_1$, we require that

 $F \cap range(g) = \emptyset.$

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

We isolate a diagonalization property that we call (\triangleleft). Definition

- 1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is expansive if $a \subseteq m(a)$ holds for every finite subset a of X.
- (△) denotes the statement: for every sequence (f_α : ω₁ → ω₁|α < ω₁) and every expansive function m : [ω₁]^{<ω} → [ω₁]^{<ω}, there exists a function g : ω₁ → ω₁ such that for every a ∈ [ω₁]^{<ω}, there exists a ⊆ b ∈ [ω₁]^{<ω} with the property that

$$\{\beta < \omega_1 | f_\alpha(\beta) = g(\beta)\} \subseteq m(b)$$

holds for all $\alpha \in m(b)$.

In addition, given some finite $F \subset \omega_1$, we require that

$$F \cap range(g) = \emptyset.$$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

We isolate a diagonalization property that we call (\triangleleft). Definition

- 1. Given a set X, we say that a map $m : [X]^{<\omega} \mapsto [X]^{<\omega}$ is expansive if $a \subseteq m(a)$ holds for every finite subset a of X.
- 2. ($\[ensuremath{ }\]$) denotes the statement: for every sequence $(f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$ and every expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$, there exists a function $g : \omega_1 \mapsto \omega_1$ such that for every $a \in [\omega_1]^{<\omega}$, there exists $a \subseteq b \in [\omega_1]^{<\omega}$ with the property that

$$\{\beta < \omega_1 | f_\alpha(\beta) = g(\beta)\} \subseteq m(b)$$

holds for all $\alpha \in m(b)$.

In addition, given some finite ${\it F} \subset \omega_1$, we require that

$$F \cap range(g) = \emptyset$$
.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

Theorem

Assume that (\bigtriangleup) holds and let M be a countable model that characterizes \aleph_1 . Then the countable M-full structure characterizes \aleph_2 .

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Lemma

If (arphi) holds, then there exists a sequence $(A_{\gamma}|\gamma < \omega_2)$ o unbounded subsets of ω_1 with the property that for all $\delta < \gamma < \omega_2$, the set $A_{\gamma} \cap A_{\delta}$ is finite.

Theorem (Baumgartner)

If CH holds and G is $Add(\omega, \omega_2)$ -generic over V, then in V[G] there is no sequence $(A_{\gamma}|\gamma < \omega_2)$ of unbounded subsets of ω_1 with finite intersections.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of \aleph_2

A Diagonalization Property

Forcing Forcing Axioms

Absolute Characterizations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma If (\varDelta) holds, then $2^{\aleph_0} > \aleph_1$.

Lemma

If (\vartriangle) holds, then there exists a sequence $(A_{\gamma}|\gamma < \omega_2)$ of unbounded subsets of ω_1 with the property that for all $\delta < \gamma < \omega_2$, the set $A_{\gamma} \cap A_{\delta}$ is finite.

Theorem (Baumgartner)

If CH holds and G is $Add(\omega, \omega_2)$ -generic over V, then in V[G] there is no sequence $(A_{\gamma}|\gamma < \omega_2)$ of unbounded subsets of ω_1 with finite intersections.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization

Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Lemma If (\varDelta) holds, then $2^{\aleph_0} > \aleph_1$.

Lemma

If (\vartriangle) holds, then there exists a sequence $(A_{\gamma}|\gamma < \omega_2)$ of unbounded subsets of ω_1 with the property that for all $\delta < \gamma < \omega_2$, the set $A_{\gamma} \cap A_{\delta}$ is finite.

Theorem (Baumgartner)

If CH holds and G is $Add(\omega, \omega_2)$ -generic over V, then in V[G] there is no sequence $(A_{\gamma}|\gamma < \omega_2)$ of unbounded subsets of ω_1 with finite intersections.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization

Property Forcing

Forcing Axioms

1. If CH holds and G is $Add(\omega, \omega_2)$ -generic over V, then in V[G] the property (a) fails.

Question

Can we force $(\varDelta) ?$

Answer

Yes!

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization

Property Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Can we force (⊿)?

Answer

Yes!

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへぐ

- 2. (artinee) is not a theorem of ZFC+ \neg CH

Question

Can we force
$$(\varDelta) ?$$

Answer

Yes!

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

Absolute Characterizations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

- 2. (artinee) is not a theorem of ZFC+ \neg CH

Question

Can we force (\varDelta) ?

Answer

Yes!

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

- 2. (artinee) is not a theorem of ZFC+ \neg CH

Question

Answer

Yes!

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The following forcing notion is due to P. Larson

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1
 - 1.2 ${\mathscr F}_p$ is a finite set of functions from ω_1 to ω_1 .
 - 3 *X*_p is a finite ∈-chain of countable elementary submodels of H(ω₂).
 - 1.4 If $X\in \mathscr{X}_p$ and $lpha\in d_p\cap X$, than $a_p(lpha)\in X$.
 - 1.5 If $X \in \mathscr{X}_{\rho}$, $\alpha \in d_{\rho} \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_{\rho}(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 - 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 - 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:

2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 - 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$. 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 - 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:
 - 2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:

2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:

2.1 $d_q \subseteq d_p$, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$. 2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:

2.1
$$d_q \subseteq d_p$$
, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$.
2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Definition

We let $\mathbb D$ denote the partial order defined by the following clauses:

- 1. A condition in \mathbb{D} is a triple $p = \langle a_p, \mathscr{F}_p, \mathscr{X}_p \rangle$ such that the following statements hold:
 - 1.1 a_p is a function from a finite subset d_p of ω_1 into ω_1 .
 - 1.2 \mathscr{F}_p is a finite set of functions from ω_1 to ω_1 .
 - 1.3 \mathscr{X}_p is a finite \in -chain of countable elementary submodels of $H(\omega_2)$.
 - 1.4 If $X \in \mathscr{X}_p$ and $\alpha \in d_p \cap X$, than $a_p(\alpha) \in X$.
 - 1.5 If $X \in \mathscr{X}_p$, $\alpha \in d_p \setminus X$ and $f \in X$ is a function from ω_1 to ω_1 , then $a_p(\alpha) \neq f(\alpha)$.
- 2. Given conditions p and q in \mathbb{D} , we have $p \leq_{\mathbb{D}} q$ if and only if the following statements hold:

2.1
$$d_q \subseteq d_p$$
, $a_q = a_p \upharpoonright d_q$, $\mathscr{F}_q \subseteq \mathscr{F}_p$ and $\mathscr{X}_q \subseteq \mathscr{X}_p$.
2.2 If $\alpha \in d_p \setminus d_q$ and $f \in \mathscr{F}_q$, then $a_p(\alpha) \neq f(\alpha)$.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Theorem (Larson) The partial order \mathbb{D} is proper.

Absolute Cardinal Characterizations

l. Souldatos

History of the Problem Introduction

Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Given a partial ordering \mathbb{P} and a cardinal κ , the Forcing Axiom $FA_{\kappa}(\mathbb{P})$ is the following statement:

For every collection $\{I_{\alpha}|\alpha < \kappa\}$ of maximal antichains of \mathbb{P} there exists a filter G that intersects every I_{α} . If Γ is a class of partial orderings, $FA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_{\kappa}(\mathbb{P})$ holds.

Example

Martin's Axiom MA_A is PA_A(coc), where x < 2^{No.}
 Proper Forcing Axiom PEA is PA_A (proper).

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of 원₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Given a partial ordering \mathbb{P} and a cardinal κ , the Forcing Axiom $FA_{\kappa}(\mathbb{P})$ is the following statement:

For every collection $\{I_{\alpha}|\alpha < \kappa\}$ of maximal antichains of \mathbb{P} there exists a filter G that intersects every I_{α} . If Γ is a class of partial orderings, $FA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_{\kappa}(\mathbb{P})$ holds.

Example

Martin's Axiom MA_A is PA_A(coc), where x < 2^{No.}
 Proper Forcing Axiom PEA is PA_A (proper).

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of 원₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Given a partial ordering \mathbb{P} and a cardinal κ , the Forcing Axiom $FA_{\kappa}(\mathbb{P})$ is the following statement: For every collection $\{I_{\alpha}|\alpha < \kappa\}$ of maximal antichains of \mathbb{P} ,

there exists a filter G that intersects every I_{α} .

If Γ is a class of partial orderings, $FA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_{\kappa}(\mathbb{P})$ holds.

Example

1. Martin's Axiam M.A., is $BA_{\kappa}(ccc)$, where $\kappa < 2^{N_{0}}$ 2. Proper Fording Axiam REA is $BA_{\kappa}(proper)$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Given a partial ordering \mathbb{P} and a cardinal κ , the Forcing Axiom $FA_{\kappa}(\mathbb{P})$ is the following statement: For every collection $\{I_{\alpha} | \alpha < \kappa\}$ of maximal antichains of \mathbb{P} , there exists a filter G that intersects every I_{α} . If Γ is a class of partial orderings, $FA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_{\kappa}(\mathbb{P})$ holds.

Example

- 1. Martin's Axiom MA_{κ} is $FA_{\kappa}(ccc)$, where $\kappa < 2^{\aleph_0}$.
- 2. Proper Forcing Axiom PFA is $FA_{\aleph_1}(proper)$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Given a partial ordering \mathbb{P} and a cardinal κ , the Forcing Axiom $FA_{\kappa}(\mathbb{P})$ is the following statement: For every collection $\{I_{\alpha} | \alpha < \kappa\}$ of maximal antichains of \mathbb{P} , there exists a filter G that intersects every I_{α} . If Γ is a class of partial orderings, $FA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_{\kappa}(\mathbb{P})$ holds.

Example

- 1. Martin's Axiom MA_{κ} is $FA_{\kappa}(ccc)$, where $\kappa < 2^{\aleph_0}$.
- 2. Proper Forcing Axiom PFA is $FA_{\aleph_1}(proper)$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト・「「「・」」、 「」、 「」、 「」、 「」、 「」、

Given a partial ordering \mathbb{P} and a cardinal κ , the Forcing Axiom $FA_{\kappa}(\mathbb{P})$ is the following statement: For every collection $\{I_{\alpha} | \alpha < \kappa\}$ of maximal antichains of \mathbb{P} , there exists a filter G that intersects every I_{α} . If Γ is a class of partial orderings, $FA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $FA_{\kappa}(\mathbb{P})$ holds.

Example

- 1. Martin's Axiom MA_{κ} is $FA_{\kappa}(ccc)$, where $\kappa < 2^{\aleph_0}$.
- 2. Proper Forcing Axiom PFA is $FA_{\aleph_1}(proper)$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Definition

Given a partial ordering \mathbb{P} and a cardinal κ , the Bounded Forcing Axiom $BFA_{\kappa}(\mathbb{P})$ is the following statement: $\mathbb{B} = r.o.(\mathbb{P}) \setminus \{0\}$, each of size at most κ , there exists a fil-G that intersects every I_{α} . If Γ is a class of partial orderings, $BFA_{\kappa}(\Gamma)$ is the statemen that for every $\mathbb{P} \subseteq \Gamma$, $BFA_{\kappa}(\mathbb{P})$ holds

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Definition

Given a partial ordering \mathbb{P} and a cardinal κ , the Bounded Forcing Axiom $BFA_{\kappa}(\mathbb{P})$ is the following statement:

 $\mathbb{B}=r.o.(\mathbb{P})\setminus\{0\}$, each of size at most κ , there exists a filter G that intersects every l_{lpha} .

If Γ is a class of partial orderings, $BFA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $BFA_{\kappa}(\mathbb{P})$ holds.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト ・西ト ・ヨト ・ヨト ・ シュマ

Definition

Given a partial ordering \mathbb{P} and a cardinal κ , the Bounded Forcing Axiom $BFA_{\kappa}(\mathbb{P})$ is the following statement:

 $\mathbb{B}=r.o.(\mathbb{P})\setminus\{0\}$, each of size at most κ , there exists a filter G that intersects every l_{lpha} .

If Γ is a class of partial orderings, $BFA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $BFA_{\kappa}(\mathbb{P})$ holds.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト ・西ト ・ヨト ・ヨト ・ シュマ

Definition

Given a partial ordering \mathbb{P} and a cardinal κ , the Bounded Forcing Axiom $BFA_{\kappa}(\mathbb{P})$ is the following statement: $\mathbb{B} = r.o.(\mathbb{P}) \setminus \{0\}$, each of size at most κ , there exists a filter G that intersects every I_{α} .

If Γ is a class of partial orderings, $BFA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $BFA_{\kappa}(\mathbb{P})$ holds.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of 원₂ A Diagonalization Property Forcing

Forcing Axioms

Definition

Given a partial ordering \mathbb{P} and a cardinal κ , the Bounded Forcing Axiom $BFA_{\kappa}(\mathbb{P})$ is the following statement: $\mathbb{B} = r.o.(\mathbb{P}) \setminus \{0\}$, each of size at most κ , there exists a filter *G* that intersects every I_{α} . If Γ is a class of partial orderings, $BFA_{\kappa}(\Gamma)$ is the statement that for every $\mathbb{P} \in \Gamma$, $BFA_{\kappa}(\mathbb{P})$ holds.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of 원₂ A Diagonalization Property Forcing

Forcing Axioms

If Γ is a class of posets, $\Sigma_1(X)$ -absoluteness for Γ is the following statement:

For every poset $\mathbb{P} \in \Gamma$, every Σ_1 -formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

 $\phi(a_1,\ldots,a_n)$ iff $V^{r.o.(\mathbb{P})} \vDash \phi(\check{a}_1,\ldots,\check{a}_n)$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト・「「「・」」、 「」、 「」、 「」、 「」、 「」、

If Γ is a class of posets, $\Sigma_1(X)$ -absoluteness for Γ is the following statement:

For every poset $\mathbb{P} \in \Gamma$, every Σ_1 -formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

 $\phi(a_1,\ldots,a_n)$ iff $V^{r.o.(\mathbb{P})} \vDash \phi(\check{a}_1,\ldots,\check{a}_n)$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

・ロト・「「「・」」、 「」、 「」、 「」、 「」、 「」、

If Γ is a class of posets, $\Sigma_1(X)$ -absoluteness for Γ is the following statement:

For every poset $\mathbb{P} \in \Gamma$, every Σ_1 -formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

$$\phi(a_1,\ldots,a_n) \text{ iff } \mathcal{V}^{r.o.(\mathbb{P})} \vDash \phi(\check{a}_1,\ldots,\check{a}_n)$$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ⊙へ⊙

If Γ is a class of posets, $\Sigma_1(X)$ -absoluteness for Γ is the following statement:

For every poset $\mathbb{P} \in \Gamma$, every Σ_1 -formula $\phi(x_1, \ldots, x_n)$, and every $a_1, \ldots, a_n \in X$,

$$\phi(a_1,\ldots,a_n) \text{ iff } V^{r.o.(\mathbb{P})} \vDash \phi(\check{a}_1,\ldots,\check{a}_n)$$

(If a Σ_1 statement with parameters from X is forceable, then it is true.)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ⊙へ⊙

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $BFA_{\kappa}(\mathbb{P})$

- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(\mathrm{H}(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- $2 \in \Sigma_1(\mathbb{H}(\omega_2))$ -absoluteness for proper forcings

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

・ロト・西ト・西ト・西・・日・

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

1. $BFA_{\kappa}(\mathbb{P})$

- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(\mathrm{H}(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- $2 \in \Sigma_1(\Pi(\omega_2))$ -absoluteness for proper forcings

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

・ロト・西ト・西ト・西・・日・

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

- 1. $BFA_{\kappa}(\mathbb{P})$
- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(\mathrm{H}(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- 2. $\Sigma_1(\mathrm{H}(\omega_2))$ -absoluteness for proper forcings.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

- 1. $BFA_{\kappa}(\mathbb{P})$
- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(H(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- 2. $\Sigma_1(H(\omega_2))$ -absoluteness for proper forcings.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

- 1. $BFA_{\kappa}(\mathbb{P})$
- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(\mathrm{H}(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- 2. $\Sigma_1(H(\omega_2))$ -absoluteness for proper forcings.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

- 1. $BFA_{\kappa}(\mathbb{P})$
- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(\mathrm{H}(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- 2. $\Sigma_1(H(\omega_2))$ -absoluteness for proper forcings.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

- 1. $BFA_{\kappa}(\mathbb{P})$
- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(\mathrm{H}(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- 2. $\Sigma_1(H(\omega_2))$ -absoluteness for proper forcings.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Absolute Characterizations

Theorem

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

- 1. $BFA_{\kappa}(\mathbb{P})$
- 2. $\Sigma_1(P(\kappa))$ -absoluteness for \mathbb{P} .
- 3. $\Sigma_1(\mathrm{H}(\kappa^+))$ -absoluteness for \mathbb{P} .

Corollary

The following statements are equivalent:

- 1. BPFA holds.
- 2. $\Sigma_1(H(\omega_2))$ -absoluteness for proper forcings.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property

Forcing

Forcing Axioms

Theorem

Idea of the Proof Fix a sequence of functions $\vec{f} = (f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$.

Let *G* be D-generic over the ground model V. Work in V[G] and define $g = \bigcup \{a_p | p \in G\}$.

Then $g : \omega_1 \mapsto \omega_1$ with $F \cap range(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_{α} 's.

Since this statement can be formulate by a Σ_1 -formula with parameters $\vec{f}, F, m \in \mathrm{H}(\omega_2)^{\mathrm{V}}$, we can use BPFA to conclude the given statement also holds in V.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Theorem

BPFA implies that (\bigtriangleup) holds.

Idea of the Proof Fix a sequence of functions $\vec{f} = (f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$.

Let *G* be D-generic over the ground model V. Work in V[G] and define $g = \bigcup \{a_p | p \in G\}$.

Then $g : \omega_1 \mapsto \omega_1$ with $F \cap range(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_{α} 's.

Since this statement can be formulate by a Σ_1 -formula with parameters $\vec{f}, F, m \in \mathrm{H}(\omega_2)^{\mathrm{V}}$, we can use BPFA to conclude the given statement also holds in V.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Theorem

BPFA implies that (\bigtriangleup) holds.

Idea of the Proof Fix a sequence of functions $\vec{f} = (f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$. Let G be \mathbb{D} -generic over the ground model V. Work in V[G] and define $g = \bigcup \{a_p | p \in G\}$. Then $g : \omega_1 \mapsto \omega_1$ with $F \cap range(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_{α} 's.

Since this statement can be formulate by a Σ_1 -formula with parameters $\vec{f}, F, m \in \mathrm{H}(\omega_2)^{\mathrm{V}}$, we can use BPFA to conclude the given statement also holds in V.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

Theorem

BPFA implies that (\bigtriangleup) holds.

Idea of the Proof Fix a sequence of functions $\vec{f} = (f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$. Let G be \mathbb{D} -generic over the ground model V. Work in V[G] and define $g = \bigcup \{a_p | p \in G\}$. Then $g : \omega_1 \mapsto \omega_1$ with $F \cap range(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_{α} 's. Since this statement can be formulate by a Σ_1 -formula with parameters $\vec{f}, F, m \in \mathrm{H}(\omega_2)^{\mathrm{V}}$, we can use BPFA to conclude

the given statement also holds in V

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of 於₂ A Diagonalization Property Forcing

Forcing Axioms

Theorem

BPFA implies that (\bigtriangleup) holds.

Idea of the Proof Fix a sequence of functions $\vec{f} = (f_{\alpha} : \omega_1 \mapsto \omega_1 | \alpha < \omega_1)$, a finite subset F of ω_1 and a expansive function $m : [\omega_1]^{<\omega} \mapsto [\omega_1]^{<\omega}$. Let G be \mathbb{D} -generic over the ground model V. Work in V[G] and define $g = \bigcup \{a_p | p \in G\}$. Then $g : \omega_1 \mapsto \omega_1$ with $F \cap range(g) = \emptyset$ and g satisfies the desired finite intersection property with all f_{α} 's. Since this statement can be formulate by a Σ_1 -formula with parameters $\vec{f}, F, m \in H(\omega_2)^V$, we can use BPFA to conclude the given statement also holds in V.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing

Forcing Axioms

We can actually do better (i.e. reduce the consistency strength)

Theorem

(arDelta) can be forced over a model of CH with a proper forcing $\mathbb P$ that satisfies the \aleph_2 -chain condition.

Idea of the Proof The proper forcing $\mathbb P$ is a "matrix version" of Larson's forcing $\mathbb D.$

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of 왔₂ A Diagonalization Property Forcing

Forcing Axioms

Absolute Characterizations

- ► Hjorth proved that there exists a countable model M which characterizes ℵ₁ in all models of ZFC.
- Using M he constructed a countable M-full structure S
- S characterizes ℵ₁ in models of CH and ℵ₂ in models of BPFA.
- One may ask if our results for ℵ₂ generalize to higher cardinalities, e.g. ℵ₃.
- To prove this one would have to extend our results for functions f : ω₁ → ω₁ to functions f : ω₂ → ω₂ (which is considerably harder).
- However, the main question here should be different.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト・日本・日本・日本・日本・日本

Absolute Characterizations

Summary:

- ► Hjorth proved that there exists a countable model M which characterizes ℵ₁ in all models of ZFC.
- ▶ Using *M* he constructed a countable *M*-full structure *S*.
- S characterizes ℵ₁ in models of CH and ℵ₂ in models of BPFA.
- One may ask if our results for ℵ₂ generalize to higher cardinalities, e.g. ℵ₃.
- ▶ To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

=irst Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

Summary:

- ► Hjorth proved that there exists a countable model M which characterizes ℵ₁ in all models of ZFC.
- Using M he constructed a countable M-full structure S.
- S characterizes ℵ₁ in models of CH and ℵ₂ in models of BPFA.
- One may ask if our results for ℵ₂ generalize to higher cardinalities, e.g. ℵ₃.
- ► To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Highth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Hjorth proved that there exists a countable model M which characterizes ℵ₁ in all models of ZFC.
- ▶ Using *M* he constructed a countable *M*-full structure *S*.
- S characterizes ℵ₁ in models of CH and ℵ₂ in models of BPFA.
- One may ask if our results for ℵ₂ generalize to higher cardinalities, e.g. ℵ₃.
- ► To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Hjorth proved that there exists a countable model M which characterizes ℵ₁ in all models of ZFC.
- ▶ Using *M* he constructed a countable *M*-full structure *S*.
- S characterizes ℵ₁ in models of CH and ℵ₂ in models of BPFA.
- One may ask if our results for ℵ₂ generalize to higher cardinalities, e.g. ℵ₃.
- ► To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Hjorth proved that there exists a countable model M which characterizes ℵ₁ in all models of ZFC.
- ▶ Using *M* he constructed a countable *M*-full structure *S*.
- S characterizes ℵ₁ in models of CH and ℵ₂ in models of BPFA.
- One may ask if our results for ℵ₂ generalize to higher cardinalities, e.g. ℵ₃.
- ► To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).

However, the main question here should be different.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- ► Hjorth proved that there exists a countable model M which characterizes ℵ₁ in all models of ZFC.
- ▶ Using *M* he constructed a countable *M*-full structure *S*.
- S characterizes ℵ₁ in models of CH and ℵ₂ in models of BPFA.
- One may ask if our results for ℵ₂ generalize to higher cardinalities, e.g. ℵ₃.
- ► To prove this one would have to extend our results for functions $f : \omega_1 \mapsto \omega_1$ to functions $f : \omega_2 \mapsto \omega_2$ (which is considerably harder).
- However, the main question here should be different.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

- 1. Can we have an absolute characterization of \aleph_{α} , $\alpha < \omega_1$?
- 2. What does it mean to have an absolute characterization?

Theorem

The characterization of \aleph_n 's, $n \in \omega$, by Baldwin, Koerwien, and Laskowski is absolute.

We suggest some answers for (2)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

1. Can we have an absolute characterization of \aleph_{α} , $\alpha < \omega_1$?

2. What does it mean to have an absolute characterization?

Theorem

The characterization of \aleph_n 's, $n \in \omega$, by Baldwin, Koerwien, and Laskowski is absolute.

We suggest some answers for (2)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

- 1. Can we have an absolute characterization of \aleph_{α} , $\alpha < \omega_1$?
- 2. What does it mean to have an absolute characterization?

Theorem

The characterization of \aleph_n 's, $n \in \omega$, by Baldwin, Koerwien, and Laskowski is absolute.

We suggest some answers for (2)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

- 1. Can we have an absolute characterization of \aleph_{α} , $\alpha < \omega_1$?
- 2. What does it mean to have an absolute characterization?

Theorem

The characterization of \aleph_n 's, $n \in \omega$, by Baldwin, Koerwien, and Laskowski is absolute.

We suggest some answers for (2)

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

- 1. Can we have an absolute characterization of \aleph_{α} , $\alpha < \omega_1$?
- 2. What does it mean to have an absolute characterization?

Theorem

The characterization of \aleph_n 's, $n \in \omega$, by Baldwin, Koerwien, and Laskowski is absolute.

```
We suggest some answers for (2)
```

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

- 1. Can we have an absolute characterization of \aleph_{α} , $\alpha < \omega_1$?
- 2. What does it mean to have an absolute characterization?

Theorem

The characterization of \aleph_n 's, $n \in \omega$, by Baldwin, Koerwien, and Laskowski is absolute.

```
We suggest some answers for (2)
```

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

- 1. Can we have an absolute characterization of \aleph_{α} , $\alpha < \omega_1$?
- 2. What does it mean to have an absolute characterization?

Theorem

The characterization of \aleph_n 's, $n \in \omega$, by Baldwin, Koerwien, and Laskowski is absolute.

```
We suggest some answers for (2)
```

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

Does there exist a formula $\Phi(v_0, v_1)$ in the language of set theory such that ZFC proves the following statements hold for all ordinals α :

- 1. In L, there exists a unique code c for a complete $\mathcal{L}_{\alpha^+,\omega}$ -sentence ψ_{α} such that $\Phi(\alpha, c)$ holds.
- If α is countable and ψ_α is as above, then ψ_α characterizes ℵ_α.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

Does there exist a formula $\Phi(v_0, v_1)$ in the language of set theory such that ZFC proves the following statements hold for all ordinals α :

- 1. In L, there exists a unique code c for a complete $\mathcal{L}_{\alpha^+,\omega}$ -sentence ψ_{α} such that $\Phi(\alpha, c)$ holds.
- If α is countable and ψ_α is as above, then ψ_α characterizes ℵ_α.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト ・西ト ・ヨト ・ヨト ・ ウヘマ

Does there exist a formula $\Phi(v_0, v_1)$ in the language of set theory such that ZFC proves the following statements hold for all ordinals α :

- 1. In L, there exists a unique code c for a complete $\mathcal{L}_{\alpha^+,\omega}$ -sentence ψ_{α} such that $\Phi(\alpha, c)$ holds.
- 2. If α is countable and ψ_{α} is as above, then ψ_{α} characterizes \aleph_{α} .

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

 Σ_3^1 -statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ_3^1 -formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

- For every real a, there is a unique real b such that Φ(a, b) holds.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

 Σ_3^1 -statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ_3^1 -formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

- For every real a, there is a unique real b such that Φ(a, b) holds.
- If α is a countable ordinal, c is a code for a complete *L*_{ω1,ω}-sentence that characterizes ℵ_α and d is a real with the property that Φ(c, d) holds, then d is a code for a complete *L*_{ω1,ω}-sentence that characterizes ℵ_{α+1}.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

 Σ_3^1 -statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ_3^1 -formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

- 1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds.
- If α is a countable ordinal, c is a code for a complete L_{ω1,ω}-sentence that characterizes ℵ_α and d is a real with the property that Φ(c, d) holds, then d is a code for a complete L_{ω1,ω}-sentence that characterizes ℵ_{α+1}.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

 Σ_3^1 -statements are upwards absolute between transitive models of set theory with the same ordinals.

Question

Is there a Σ_3^1 -formula $\Phi(v_0, v_1)$ in the language of second-order arithmetic with the property that the axioms of ZFC prove that the following statements hold:

- 1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds.
- 2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes \aleph_{α} and d is a real with the property that $\Phi(c, d)$ holds, then d is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes $\aleph_{\alpha+1}$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of \aleph_2 A Diagonalization Property Forcing Forcing Axioms

The existence of a proper class of Woodin cardinals implies that the theory of $L(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory ZFC + There exists a proper class of Woodin cardinals proves the following statements hold:

- For every real a, there is a unique real b such that Φ(a, b) holds in L(R).
- 2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes \aleph_{α} and d is a real with the property that $\Phi(c,d)$ holds in $L(\mathbb{R})$, then d is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes $\aleph_{\alpha+1}$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

The existence of a proper class of Woodin cardinals implies that the theory of $L(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory ZFC + There exists a proper class of Woodin cardinals proves the following statements hold:

- For every real a, there is a unique real b such that Φ(a, b) holds in L(R).
- 2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes \aleph_{α} and d is a real with the property that $\Phi(c, d)$ holds in $L(\mathbb{R})$, then d is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes $\aleph_{\alpha+1}$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

=irst Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

The existence of a proper class of Woodin cardinals implies that the theory of $L(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory ZFC + There exists a proper class of Woodin cardinals proves the following statements hold:

- 1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds in $L(\mathbb{R})$.
- 2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes \aleph_{α} and d is a real with the property that $\Phi(c, d)$ holds in $L(\mathbb{R})$, then d is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes $\aleph_{\alpha+1}$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

The existence of a proper class of Woodin cardinals implies that the theory of $L(\mathbb{R})$ with real parameters is generically absolute.

Question

Is there a formula $\Phi(v_0, v_1)$ in the language of set theory with the property that the theory ZFC + There exists a proper class of Woodin cardinals proves the following statements hold:

- 1. For every real a, there is a unique real b such that $\Phi(a, b)$ holds in $L(\mathbb{R})$.
- 2. If α is a countable ordinal, c is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes \aleph_{α} and d is a real with the property that $\Phi(c, d)$ holds in $L(\mathbb{R})$, then d is a code for a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence that characterizes $\aleph_{\alpha+1}$.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of №2 A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Absolute Characterizations

・ロト ・雪ト ・ヨト ・ヨー シック

Bounded forcing axioms as principles of generic absoluteness.

Arch. Math. Logic, 39(6):393-401, 2000.

 John T. Baldwin, Martin Koerwien, and Michael C Laskowski.
 Disjoint amalgamation in locally finite AEC.
 J. Symb. Log., 82(1):98–119, 2017.

James E. Baumgartner.

Almost-disjoint sets, the dense set problem and the partition calculus. Ann. Math. Logic. 9(4):401–439, 1976.

Martin Goldstern and Saharon Shelah.
 The bounded proper forcing axiom.
 J. Symbolic Logic, 60(1):58-73, 1995.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Bounded forcing axioms as principles of generic absoluteness.

Arch. Math. Logic, 39(6):393-401, 2000.

 John T. Baldwin, Martin Koerwien, and Michael C. Laskowski.
 Disjoint amalgamation in locally finite AEC.
 J. Symb. Log., 82(1):98–119, 2017.

📔 James E. Baumgartner.

Almost-disjoint sets, the dense set problem and the partition calculus. Ann. Math. Logic. 9(4):401–439, 1976.

Martin Goldstern and Saharon Shelah.
 The bounded proper forcing axiom.
 J. Symbolic Logic, 60(1):58-73, 1995.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Bounded forcing axioms as principles of generic absoluteness.

Arch. Math. Logic, 39(6):393-401, 2000.

 John T. Baldwin, Martin Koerwien, and Michael C. Laskowski.
 Disjoint amalgamation in locally finite AEC.
 J. Symb. Log., 82(1):98–119, 2017.

James E. Baumgartner.

Almost-disjoint sets, the dense set problem and the partition calculus.

Ann. Math. Logic, 9(4):401–439, 1976.

Martin Goldstern and Saharon Shelah. The bounded proper forcing axiom. J. Symbolic Logic, 60(1):58–73, 1995.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Bounded forcing axioms as principles of generic absoluteness.

Arch. Math. Logic, 39(6):393-401, 2000.

 John T. Baldwin, Martin Koerwien, and Michael C. Laskowski.
 Disjoint amalgamation in locally finite AEC.
 J. Symb. Log., 82(1):98–119, 2017.

James E. Baumgartner.

Almost-disjoint sets, the dense set problem and the partition calculus.

Ann. Math. Logic, 9(4):401–439, 1976.

Martin Goldstern and Saharon Shelah.
 The bounded proper forcing axiom.
 J. Symbolic Logic, 60(1):58-73, 1995.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Knight's model, its automorphism group, and characterizing the uncountable cardinals. J. Math. Log., 2(1):113-144, 2002.

Saharon Shelah.

Notes on cardinals that are characterizable by a complete ?

Absolute Cardinal Characterizations

Souldatos

Introduction Hiorth's Solution

The Case of ℵ, A Diagonalization Forcing Forcing Axioms

Knight's model, its automorphism group, and characterizing the uncountable cardinals. J. Math. Log., 2(1):113-144, 2002.

Akihiro Kanamori.

The higher infinite.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.

Saharon Shelah.

Notes on cardinals that are characterizable by a complete ?

Absolute Cardinal Characterizations

Souldatos

Introduction Hiorth's Solution

The Case of ℵ, A Diagonalization Forcing Forcing Axioms

Knight's model, its automorphism group, and characterizing the uncountable cardinals. J. Math. Log., 2(1):113-144, 2002.

Akihiro Kanamori.

The higher infinite.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.

Paul B. Larson.

The nonstationary ideal in the \mathbb{P}_{max} extension. J. Symbolic Logic, 72(1):138–158, 2007.

Saharon Shelah.

Notes on cardinals that are characterizable by a complete ?

Absolute Cardinal Characterizations

Souldatos

Introduction Hiorth's Solution

The Case of ℵ, A Diagonalization Forcing Forcing Axioms

Knight's model, its automorphism group, and characterizing the uncountable cardinals. *J. Math. Log.*, 2(1):113–144, 2002.

Akihiro Kanamori.

The higher infinite.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.

Paul B. Larson.

The nonstationary ideal in the \mathbb{P}_{max} extension. J. Symbolic Logic, 72(1):138–158, 2007.

📔 Saharon Shelah.

Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Springer-Verlag, Berlin-New York, 1982.

Ioannis Souldatos

Notes on cardinals that are characterizable by a comblete ~

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Knight's model, its automorphism group, and characterizing the uncountable cardinals. *J. Math. Log.*, 2(1):113–144, 2002.

Akihiro Kanamori.

The higher infinite.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.

Paul B. Larson.

The nonstationary ideal in the \mathbb{P}_{max} extension. J. Symbolic Logic, 72(1):138–158, 2007.

📔 Saharon Shelah.

Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Springer-Verlag, Berlin-New York, 1982.

loannis Souldatos.

Notes on cardinals that are characterizable by a complete ...

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Knight's model, its automorphism group, and characterizing the uncountable cardinals. *J. Math. Log.*, 2(1):113–144, 2002.

Akihiro Kanamori.

The higher infinite.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.

Paul B. Larson.

The nonstationary ideal in the \mathbb{P}_{max} extension. J. Symbolic Logic, 72(1):138–158, 2007.

📔 Saharon Shelah.

Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Springer-Verlag, Berlin-New York, 1982.

loannis Souldatos.

Notes on cardinals that are characterizable by a complete ...

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Knight's model, its automorphism group, and characterizing the uncountable cardinals. *J. Math. Log.*, 2(1):113–144, 2002.

Akihiro Kanamori.

The higher infinite.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.

Paul B. Larson.

The nonstationary ideal in the \mathbb{P}_{max} extension. J. Symbolic Logic, 72(1):138–158, 2007.

📔 Saharon Shelah.

Proper forcing, volume 940 of *Lecture Notes in Mathematics*.

Springer-Verlag, Berlin-New York, 1982.

loannis Souldatos.

Notes on cardinals that are characterizable by a complete ...

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Ioannis Souldatos.

Notes on cardinals that are characterizable by a complete (Scott) sentence.

Notre Dame Journal of Formal Logic, 55(4):533–551, 2014.

Stevo Todorčević.

Directed sets and cofinal types. *Trans. Amer. Math. Soc.*, 290(2):711–723, 1985.

V. Hugh Woodin.

The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of De Gruyter Series in Logic and its Applications. Walter de Gruyter GmbH & Co. KG, Berlin, revised edition, 2010.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem

Hjorth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Ioannis Souldatos.

Notes on cardinals that are characterizable by a complete (Scott) sentence.

Notre Dame Journal of Formal Logic, 55(4):533–551, 2014.

Stevo Todorčević.

Directed sets and cofinal types.

Trans. Amer. Math. Soc., 290(2):711-723, 1985.

W. Hugh Woodin

The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of De Gruyter Series in Logic and its Applications. Walter de Gruyter GmbH & Co. KG, Berlin, revised edition, 2010.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction

Hjorth's Solution First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms

Ioannis Souldatos.

Notes on cardinals that are characterizable by a complete (Scott) sentence.

Notre Dame Journal of Formal Logic, 55(4):533–551, 2014.

Stevo Todorčević.

Directed sets and cofinal types.

Trans. Amer. Math. Soc., 290(2):711-723, 1985.

W. Hugh Woodin.

The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of De Gruyter Series in Logic and its Applications. Walter de Gruyter GmbH & Co. KG, Berlin, revised edition, 2010.

Absolute Cardinal Characterizations

I. Souldatos

History of the Problem Introduction Hierth's Solution

First Hjorth Construction

The Case of ℵ₂ A Diagonalization Property Forcing Forcing Axioms