I. Souldatos

## The Local Hanf Number below $2^{\aleph_1}$

Joint Meetings 2020 Denver

loannis (Yiannis) Souldatos

. Souldatos

This is a joint project with Dima Sinapova.

# History

- In (January of) 1977 Shelah's published "A Two-Cardinal Theorem and a Combinatorial Theorem".
- ► The purpose of the paper is to prove that for first-order theories (ℵ<sub>ω</sub>, ℵ<sub>0</sub>) → (2<sup>ℵ₀</sup>, ℵ<sub>0</sub>).
- Shelah then conjectures that "if ψ ∈ L<sub>ω1,ω</sub> has a model of cardinality ℵ<sub>ω1</sub>, then ψ has a model of size 2<sup>ℵ0</sup>."
- If  $2^{\aleph_0} \leq \aleph_{\omega_1}$ , the result is trivial. So, rephrase:

### Conjecture (Shelah)

In <u>all</u> models of ZFC+( $2^{\aleph_0} > \aleph_{\omega_1}$ ), if  $\psi \in \mathcal{L}_{\omega_1,\omega}$  has a model of cardinality  $\aleph_{\omega_1}$ , then  $\psi$  has a model of size  $2^{\aleph_0}$ .

History II

### Conjecture (Shelah)

In <u>all</u> models of ZFC+( $2^{\aleph_0} > \aleph_{\omega_1}$ ), if  $\psi \in \mathcal{L}_{\omega_1,\omega}$  has a model of cardinality  $\aleph_{\omega_1}$ , then  $\psi$  has a model of size  $2^{\aleph_0}$ .

- (Assuming the conjecture is correct), Shelah calls ℵ<sub>ω1</sub> the local Hanf number below 2<sup>ℵ0</sup>.
- The conjecture remains open as of today (43 years later).
- In 1999, Shelah published his result that the conjecture is consistent.
  - ► Start with a model V of ZFC+GCH.
  - ► Add enough Cohen reals so that 2<sup>ℵ</sup>₀ > ℵ<sub>ω₁</sub> in the extension.
  - In the extension the conjecture holds true.

Local Hanf Number

## Equivalent Formulation

The conjecture is equivalent to the following: For every  $\psi \in \mathcal{L}_{\omega_1,\omega}$ ,

- 1. If  $\kappa$  is a cardinal in the interval  $[\aleph_{\omega_1}, 2^{\aleph_0})$  and  $\psi$  has a model of size  $\kappa$ , then  $\psi$  has a model of size  $\kappa^+$  (you can not stop at a successor cardinal) and
- 2. If  $(\kappa_i)$  is an increasing sequence in the interval  $[\aleph_{\omega_1}, 2^{\aleph_0})$  and  $\psi$  has models in all cardinalities  $\kappa_i$ , then  $\psi$  has a model of size  $\cup_i \kappa_i$ .

(you can not stop at a limit cardinal) This motivates the following definitions

## Characterizable Cardinals

Definition

Let  $\psi \in \mathcal{L}_{\omega_1,\omega}$ .

- If ψ has models exactly in cardinalities [ℵ<sub>0</sub>, κ], then ψ characterizes κ.
- If κ is a limit cardinal and ψ has models exactly in cardinalities [ℵ<sub>0</sub>, κ), then ψ limit characterizes κ.

Local Hanf Number

## Theorem (Hjorth)

For all  $\alpha < \omega_1$ , there exists some  $\psi_{\alpha}$  that characterizes  $\aleph_{\alpha}$ .

#### Corollary

If  $\psi$  characterizes some  $\kappa$ , then for every  $\alpha < \omega_1$ , there exists some  $\psi_{\alpha}$  that characterizes  $\kappa^{+\alpha}$  (:the  $\alpha^{th}$  successor of  $\kappa$ ).

This says that characterizable cardinals come in "clusters" of length  $\omega_1$ .

## Clusters of Characterizable Cardinals



Local Hanf Number

## Shelah's Conjecture

Local Hanf Number



- Limit characterizable cardinals have not been studied (yet!)
- Here is an easy example:
  - Let  $\phi_n$  characterize  $\aleph_n$ .
  - Then  $\bigvee_n \phi_n$  has models in cardinalities  $[\aleph_0, \aleph_\omega)$ .
  - I.e.  $\bigvee_n \phi_n$  limit characterizes  $\aleph_{\omega}$ .

## **Open Questions**

### **Open Questions**

- Give examples of limit characterizable cardinals of uncountable cofinality. Can 2<sup>ℵ0</sup> be such an example?
- Is it possible that some limit cardinal is characterizable, but not limit characterizable? Shelah's conjecture implies that if 2<sup>№</sup>0 is a limit cardinal, it is not limit characterizable.
- Can we prove/disprove similar conjectures for higher cardinals? E.g. 2<sup>2<sup>ℵ0</sup></sup>, 2<sup>ℵ1</sup>, □<sub>α</sub>,...

### Recent Developments

#### Theorem (Sinapova, S.)

There exists some  $\psi \in \mathcal{L}_{\omega_1,\omega}$  so that the following are consistent

- 1.  $2^{\aleph_0}$  can be arbitrarily large and  $\psi$  characterizes  $2^{\aleph_0}$ ;
- CH (or ¬CH ), 2<sup>ℵ1</sup> is a regular cardinal greater than ℵ<sub>2</sub> and ψ characterizes 2<sup>ℵ1</sup>;
- 3.  $2^{\aleph_0} < \aleph_{\omega_1} < 2^{\aleph_1}$  and  $\psi$  characterizes  $\aleph_{\omega_1}$ ; and
- 4. CH,  $2^{\aleph_1}$  is the  $(2^{\aleph_1})^{th}$ -weakly inaccessible and  $\psi$  limit characterizes  $2^{\aleph_1}$ . We need ZFC+ a Mahlo for this.

The idea is that  $\psi$  codes Kurepa trees. Turning on-off the existence of Kurepa trees, we get the corresponding consistency results.

Local Hanf Number

I. Souldatos

#### Comments

- This is the first non-trivial example of limit characterizing a cardinal.
- In fact, it is consistent that
  - $\psi$  characterizes  $2^{\aleph_1}$ ,
  - ullet  $\psi$  characterizes some cardinal smaller than 2<sup> $leph_1$ </sup>, and that
  - $\psi$  limit characterizes  $2^{\aleph_1}$ .
- Ulrich and Shelah (in private communication) constructed a model of ZFC where
  - ▶ there is a local Hanf number below  $\beth_2 = 2^{2^{\aleph_0}}$  and
  - the local Hanf number is no more than  $\aleph_{\exists_{1}^{++}}$ .
- ► In view of our result, there is not a good notion of a local Hanf number below 2<sup>2<sup>ℵ0</sup></sup>, 2<sup>ℵ1</sup>.

### Idea of the Proof

- ► The sentence \u03c6 codes a pseudo-tree (levels are not well-ordered, but they are linearly ordered) with countable levels.
- ► The height of the tree (i.e. the order type of the levels) is ℵ<sub>1</sub>-like (every initial segment is countable).
- If the height is countable, the size of the model is bounded by 2<sup>ℵ₀</sup>.
- ► If the height is uncountable, we can embed ω<sub>1</sub> cofinally into the height.
- ► If the height is uncountable and there are more than ℵ<sub>1</sub>-many branches, we can recover a Kurepa tree (not pseudo-tree).

Local Hanf Number

# Maximality Principles

## Definition

- 1. Let  $\Gamma_{\kappa}$  be the class of  $\kappa$ -closed, stationary  $\kappa^+$ -linked, well met poset  $\mathbb{P}$  with greatest lower bounds.
- 2.  $GMA_{\kappa}$  states that for every  $\mathbb{P} \in \Gamma_{\kappa}$ , and for every collection of less than  $2^{\kappa}$  many dense sets there is a filter for  $\mathbb{P}$  meeting them.
- A sentence φ is Γ<sub>κ</sub>-forceably necessary, if there is a Γ<sub>κ</sub> forcing extension V[G] such that φ holds true in all further Γ<sub>κ</sub> forcing extensions V[G][H] of V[G].
- 4. For a regular  $\kappa$ ,  $SMP_n(\kappa)$  says  $\kappa^{<\kappa} = \kappa$  and every  $\sum_{n}$ -sentence  $\phi$  with parameters in  $H(2^{\kappa})$  which is  $\Gamma_{\kappa}$ -forceably necessary,  $\phi$  is true in V.
- 5.  $SMP(\kappa)$  is the statement that  $SMP_n(\kappa)$  holds for all n.

Local Hanf Number

# Maximality Principles II

### Theorem (Lücke)

- 1. If  $\kappa$  satisfies  $\kappa = \kappa^{<\kappa}$ , then a model of  $SMP(\kappa)$  can be forced starting from a Mahlo cardinal  $\theta > \kappa$ .
- 2. If V is a model of  $SMP_2(\aleph_1)$ , then the following hold true:
  - ► GMA<sub>ℵ1</sub>
  - ► CH
  - 2<sup>ℵ1</sup> is weakly inaccessible (in fact the (2<sup>ℵ1</sup>)<sup>th</sup>-weakly inaccessible).
  - every Σ<sub>1</sub><sup>1</sup>-subset of ω<sub>1</sub><sup>ω1</sup> of cardinality 2<sup>ω1</sup> contains a perfect set.

#### Corollary

In the above model, there is no Kurepa tree with  $2^{\aleph_1}$  many branches, but for every  $\aleph_2 \leq \lambda < 2^{\aleph_1}$ , there is a Kurepa tree with  $\lambda$ -many branches.

Local Hanf Number

### Conclusion

#### **Open Question**

Does the above result generalizes to higher cardinalities?

If so, then there is no local Hanf number for any  $\beth_{\alpha}$ ,  $\alpha > 1$ .

**View** #1: There is no local Hanf number at all. We just did not work hard enough to find a model of  $ZFC+(2^{\aleph_0} > \aleph_{\omega_1})$ where Shelah's conjecture fails. **View** #2: There is a local Hanf number below  $2^{\aleph_0}$ , but no higher. This indicates the specialness of  $2^{\aleph_0}$ . E.g. there have been attempts (by Shelah and Baldwin-Laskowski) to prove the existence of  $2^{\aleph_0}$ -sized models using countable "approximations". Why does it take so long? Local Hanf Number

- ► Thank you!
- Copy of these slides will be posted at http://souldatosresearch.wordpress.com/
- Questions?