

Aristotle Square in Thessaloniki, Greece

The Hanf Number for Scott Sentences of Computable Structures

Joint Meetings 2019
Baltimore

Ioannis (Yiannis) Souldatos
通 DETROIT MERCY

This is a joint project with Sergey Goncharov and Julia Knight.

Preliminaries

Definition

- The Hanf number for S is the least infinite cardinal κ such that for all $\varphi \in S$, if φ has models in all infinite cardinalities less than κ, then it has models of all infinite
- An $\mathcal{L}_{\omega_{1}, \omega}$-sentence ϕ characterizes an infinite cardinal κ, if ϕ has a model of cardinality κ, but no model of cardinality κ^{+}. cardinalities.

Preliminaries

Definition

- The Hanf number for S is the least infinite cardinal κ such that for all $\varphi \in S$, if φ has models in all infinite cardinalities less than κ, then it has models of all infinite
- An $\mathcal{L}_{\omega_{1}, \omega \text {-sentence } \phi}$ characterizes an infinite cardinal κ, if ϕ has a model of cardinality κ, but no model of cardinality κ^{+}. cardinalities.

Preliminaries

Definition

- The Hanf number for S is the least infinite cardinal κ such that for all $\varphi \in S$, if φ has models in all infinite cardinalities less than κ, then it has models of all infinite
- An $\mathcal{L}_{\omega_{1}, \omega}$-sentence ϕ characterizes an infinite cardinal κ, if ϕ has a model of cardinality κ, but no model of cardinality κ^{+}. cardinalities.

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_{1}, \omega}$-sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha<\omega_{1}$, then it has models of all infinite cardinalities.

Thus, $\beth_{\omega_{1}}$ is the Hanf number for (complete) $\mathcal{L}_{\omega_{1}, \omega}$-sentences.

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_{1}, \omega}$-sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha<\omega_{1}$, then it has models of all infinite cardinalities.

Theorem (Malitz, Baumgartner)

For every $\alpha<\omega_{1}$, there exists a complete $\mathcal{L}_{\omega_{1}, \omega}$-sentence ϕ_{α} that has models of size \beth_{α}, but no larger.

Thus, $\beth_{\omega_{1}}$ is the Hanf number for (complete) $\mathcal{L}_{\omega_{1}, \omega}$-sentences.

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_{1}, \omega}$-sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha<\omega_{1}$, then it has models of all infinite cardinalities.

Theorem (Malitz, Baumgartner)

For every $\alpha<\omega_{1}$, there exists a complete $\mathcal{L}_{\omega_{1}, \omega}$-sentence ϕ_{α} that has models of size \beth_{α}, but no larger.

Thus, $\beth_{\omega_{1}}$ is the Hanf number for (complete) $\mathcal{L}_{\omega_{1}, \omega}$-sentences.

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_{1}, \omega}$-sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha<\omega_{1}$, then it has models of all infinite cardinalities.

Theorem (Malitz, Baumgartner)

For every $\alpha<\omega_{1}$, there exists a complete $\mathcal{L}_{\omega_{1}, \omega}$-sentence ϕ_{α} that has models of size \beth_{α}, but no larger.

Thus, $\beth_{\omega_{1}}$ is the Hanf number for (complete) $\mathcal{L}_{\omega_{1}, \omega}$-sentences.

Preliminaries Upper Bound Lower Bound

Hanf Numbers
$\mathcal{L}^{\mathcal{L}} \omega_{1}, \omega$ Question Answer

Main Question (Sy Friedman)

What is the Hanf number for the Scott sentences of computable structures?

Preliminaries Upper Bound Lower Bound

Hanf Numbers $\mathcal{L}_{\omega_{1}}, \omega$ Maín Question Answer

Answer

Theorem (S.Goncharov,J.Knight,S.)

(a) Let \mathcal{A} be a computable structure in a computable vocabulary τ, and let ϕ be a Scott sentence for \mathcal{A}. If ϕ has models of cardinality \beth_{n} for all $\alpha<\omega_{1}^{C K}$, then it has models of all infinite cardinalities.
(b) There exists a partial computable function I such that for each $a \in \mathcal{O}, I(a)$ is a tuple of computable indices for several objects, among which are a relational vocabulary τ_{a} and the atomic diagram of a τ_{a}-structure \mathcal{A}_{a}. The Scott sentence of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a

Answer

Theorem (S.Goncharov,J.Knight,S.)

(a) Let \mathcal{A} be a computable structure in a computable vocabulary τ, and let ϕ be a Scott sentence for \mathcal{A}. If ϕ has models of cardinality \beth_{α} for all $\alpha<\omega_{1}^{C K}$, then it has models of all infinite cardinalities.
(b) There exists a partial computable function I such that for each $a \in \mathcal{O}, I(a)$ is a tuple of computable indices for several objects, among which are a relational vocabulary τ_{a} and the atomic diagram of a τ_{a}-structure \mathcal{A}_{a}. The Scott sentence of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a.

Answer

Theorem (S.Goncharov, J.Knight,S.)

(a) Let \mathcal{A} be a computable structure in a computable vocabulary τ, and let ϕ be a Scott sentence for \mathcal{A}. If ϕ has models of cardinality \beth_{α} for all $\alpha<\omega_{1}^{C K}$, then it has models of all infinite cardinalities.
(b) There exists a partial computable function I such that for each $a \in \mathcal{O}, I(a)$ is a tuple of computable indices for several objects, among which are a relational vocabulary τ_{a} and the atomic diagram of a τ_{a}-structure \mathcal{A}_{a}. The Scott sentence of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a.

Corollary

The Hanf number for Scott sentences of computable structures is $\beth_{\omega_{1}^{c k}}$.

Computable Structures

 Morley-Barwise Theorem Proof
Definition

- $\omega_{1}^{C K}$ is the least non-computable ordinal.
- $L_{\omega_{1}}$ ck denotes the constructible universe at height $\omega_{1}^{C K}$.
- Let τ be a computable vocabulary. A τ-structure \mathcal{A} is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_{1}, \omega}(\tau)$-sentence is computable if the infinite disjunctions and conjunctions are over c.e. sets.

Computable Structures

 Morley-Barwise Theorem Proof
Definition

- $\omega_{1}^{C K}$ is the least non-computable ordinal.
- $L_{\omega_{1}^{C K}}$ denotes the constructible universe at height $\omega_{1}^{C K}$
- Let τ be a computable vocabulary. A τ-structure \mathcal{A} is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_{1}, \omega}(\tau)$-sentence is computable if the infinite disjunctions and conjunctions are over c.e. sets.

Computable Structures

 Morley-Barwise Theorem Proof
Definition

- $\omega_{1}^{C K}$ is the least non-computable ordinal.
- $L_{\omega_{1}^{C K}}$ denotes the constructible universe at height $\omega_{1}^{C K}$.
- Let τ be a computable vocabulary. A τ-structure \mathcal{A} is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega r, \omega}(\tau)$-sentence is computable if the infinite cisjunctions and conjunctions are over c.e. sets.

Definition

- $\omega_{1}^{C K}$ is the least non-computable ordinal.
- $L_{\omega_{1}^{C K}}$ denotes the constructible universe at height $\omega_{1}^{C K}$.
- Let τ be a computable vocabulary. A τ-structure \mathcal{A} is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_{1}, \omega}(\tau)$-sentence is computable if the infinite disjunctions and conjunctions are over c.e. sets.

Definition

- $\omega_{1}^{C K}$ is the least non-computable ordinal.
- $L_{\omega_{1}^{C K}}$ denotes the constructible universe at height $\omega_{1}^{C K}$.
- Let τ be a computable vocabulary. A τ-structure \mathcal{A} is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_{1}, \omega}(\tau)$-sentence is computable if the infinite disjunctions and conjunctions are over c.e. sets.

Computable Structures

 Morley-Barwise Theorem Proof
Facts

- $L_{\omega_{1}^{c k}}$ is an admissible set.
- The subsets of ω in $L_{\omega_{1}} C K$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega_{1}}$.
- All computable $\mathcal{L}_{\omega_{1}, \omega}$-formulas in a computable vocabulary are elements of $L_{\omega_{1}} c k$.

Facts

- $L_{\omega_{1}^{c K}}$ is an admissible set.
- The subsets of ω in $L_{\omega_{1}} c k$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega_{1}}$.
- All computable $\mathcal{L}_{\omega_{1}, \omega}$-formulas in a computable vocabulary are elements of $L_{\omega_{1}} k$.

Facts

- $L_{\omega_{1}^{c K}}$ is an admissible set.
- The subsets of ω in $L_{\omega_{1}^{c k}}$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega_{1}^{c k}}$.
- All computable $\mathcal{L}_{\omega_{1}, \omega^{-}}$-formulas in a computable vocabulary are elements of $L_{\omega_{1}} \kappa$.

Facts

- $L_{\omega_{1}^{c K}}$ is an admissible set.
- The subsets of ω in $L_{\omega_{1}}^{c K}$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega_{1}}$.
- All computable $\mathcal{L}_{\omega_{1}, \omega}$-formulas in a computable vocabulary are elements of $L_{\omega_{1}} \kappa$.

Theorem (Morley, Barwise)

Let A be a countable admissible set with $\circ(A)=\gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_{1}, \omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{\alpha}<\beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for $A=L_{\omega_{1}}^{c k}$ and ϕ a computable $\mathcal{L}_{\omega_{1}, \omega}$-sentence.

Theorem (Morley, Barwise)

Let A be a countable admissible set with $\circ(A)=\gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_{1}, \omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{\alpha}<\beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for $A=L_{\omega_{1}^{c k}}$ and ϕ a computable $\mathcal{L}_{\omega_{1}, \omega}$-sentence.

Theorem (Morley, Barwise)

Let A be a countable admissible set with $\circ(A)=\gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_{1}, \omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{\alpha}<\beth_{\gamma}$, or
- ϕ has arbitrarily large models.
 $\mathcal{L}_{\omega_{1}, \omega}$-sentence.

Theorem (Morley, Barwise)

Let A be a countable admissible set with $\circ(A)=\gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_{1}, \omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{\alpha}<\beth_{\gamma}$, or
- ϕ has arbitrarily large models.
 $\mathcal{L}_{\omega_{1}, \omega}$-sentence.

Theorem (Morley, Barwise)

Let A be a countable admissible set with $\circ(A)=\gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_{1}, \omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{\alpha}<\beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for $A=L_{\omega_{1}^{c k}}$ and ϕ a computable $\mathcal{L}_{\omega_{1}, \omega}$-sentence.

Theorem (Morley, Barwise)

Let A be a countable admissible set with $\circ(A)=\gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_{1}, \omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{\alpha}<\beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for $A=L_{\omega_{1}^{c k}}$ and ϕ a computable $\mathcal{L}_{\omega_{1}, \omega}$-sentence.

Corollary
The Hanf number for computable $\mathcal{L}_{\omega_{1}, \omega}$-sentences is $\leq \beth_{\omega_{1}} \kappa K$.

This would suffice for the first part of the theorem, but computable structures with no computable Scott sentence. We bypass this problem by expanding the vocabulary.

This would suffice for the first part of the theorem, but there are computable structures with no computable Scott sentence. We bypass this problem by expanding the vocabulary.

This would suffice for the first part of the theorem, but there are computable structures with no computable Scott sentence. We bypass this problem by expanding the vocabulary.

This would suffice for the first part of the theorem, but there are computable structures with no computable Scott sentence. We bypass this problem by expanding the vocabulary.

Lemma

Let τ be a computable vocabulary, and let \mathcal{A} be a computable τ-structure with Scott sentence ϕ. There is a computable vocabulary $\tau^{*} \supseteq \tau$ with a computable infinitary τ^{*}-sentence ϕ^{*} such that for any τ-structure \mathcal{B},

$$
\mathcal{B} \models \phi \text { iff } \mathcal{B} \text { has a } \tau^{*} \text {-expansion } \mathcal{B}^{*} \text { satisfying } \phi^{*} \text {. }
$$

Computable Structures

 Morley-Barwise Theorem Proof
Proof: Hanf Number is $\leq \beth_{\omega_{1}^{c k}}$.

- From the original Scott sentence ϕ, in a computable vocabulary τ, pass to τ^{*} and ϕ^{*}.
- For each $\alpha<\omega_{1}^{C K}$, the sentence ϕ has a model B of cardinality \beth_{α}. Expand these models to models of ϕ^{*}.
- By Morley-Barwise Theorem, ϕ^{*} has arbitrarily large models.
- The τ-reducts of all these models satisfy ϕ.
- Therefore, ϕ has arbitrarily large models.

Proof: Hanf Number is $\leq \beth_{\omega_{1}^{c k}}$.

- From the original Scott sentence ϕ, in a computable vocabulary τ, pass to τ^{*} and ϕ^{*}.
- For each $\alpha<\omega_{1}^{C K}$, the sentence ϕ has a model \mathcal{B} of cardinality \beth_{α}. Expand these models to models of ϕ^{*}
- By Morley-Barwise Theorem, ϕ^{*} has arbitrarily large mordels.
- The τ-reducts of all these models satisfy ϕ.
- Therefore, ϕ has arbitrarily large models.

Proof: Hanf Number is $\leq \beth_{\omega_{1}} c k$.

- From the original Scott sentence ϕ, in a computable vocabulary τ, pass to τ^{*} and ϕ^{*}.
- For each $\alpha<\omega_{1}^{C K}$, the sentence ϕ has a model \mathcal{B} of cardinality \beth_{α}. Expand these models to models of ϕ^{*}.
- By Morley-Barwise Theorem, ϕ^{*} has arbitrarily large models.
- The τ-reducts of all these models satisfy ϕ.
- Therefore, ϕ has arbitrarily large models.

Proof: Hanf Number is $\leq \beth_{\omega_{1}^{c k}}$.

- From the original Scott sentence ϕ, in a computable vocabulary τ, pass to τ^{*} and ϕ^{*}.
- For each $\alpha<\omega_{1}^{C K}$, the sentence ϕ has a model \mathcal{B} of cardinality \beth_{α}. Expand these models to models of ϕ^{*}.
- By Morley-Barwise Theorem, ϕ^{*} has arbitrarily large models.
- The τ-reducts of all these models satisfy ϕ.
- Therefore, ϕ has arbitrarily large models.

Proof: Hanf Number is $\leq \beth_{\omega_{1}} c k$.

- From the original Scott sentence ϕ, in a computable vocabulary τ, pass to τ^{*} and ϕ^{*}.
- For each $\alpha<\omega_{1}^{C K}$, the sentence ϕ has a model \mathcal{B} of cardinality \beth_{α}. Expand these models to models of ϕ^{*}.
- By Morley-Barwise Theorem, ϕ^{*} has arbitrarily large models.
- The τ-reducts of all these models satisfy ϕ.
- Therefore, ϕ has arbitrarily large models.

Proof: Hanf Number is $\leq \beth_{\omega_{1}^{c k}}$.

- From the original Scott sentence ϕ, in a computable vocabulary τ, pass to τ^{*} and ϕ^{*}.
- For each $\alpha<\omega_{1}^{C K}$, the sentence ϕ has a model \mathcal{B} of cardinality \beth_{α}. Expand these models to models of ϕ^{*}.
- By Morley-Barwise Theorem, ϕ^{*} has arbitrarily large models.
- The τ-reducts of all these models satisfy ϕ.
- Therefore, ϕ has arbitrarily large models.

For second part, we need a computable version of Fraïssé limit. For our purposes we

The existence and uniqueness of the Fraïssé limit are rather straightforward.

For second part, we need a computable version of Fraïssé limit. For our purposes we
(1) work only with relational vocabularies, but these vocabularies maybe infinite.
(2) take the Fraïssé limit of some collection K of finite structures
(3) K satisfies AP and JEP, but not HP, and
(0) there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

For second part, we need a computable version of Fraïssé limit.
For our purposes we
(1) work only with relational vocabularies, but these vocabularies maybe infinite.
(2) take the Fraïssé limit of some collection K of finite structures
© K satisfies AP and JEP, but not HP, and
(- there are some computability assumptions on K
The existence and uniqueness of the Fraïssé limit are rather straightforward.

For second part, we need a computable version of Fraïssé limit.
For our purposes we
(1) work only with relational vocabularies, but these vocabularies maybe infinite.
(2) take the Fraïssé limit of some collection K of finite structures
(3) K satisfies AP and JEP, but not HP, and
(9) there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

For second part, we need a computable version of Fraïssé limit.
For our purposes we
(1) work only with relational vocabularies, but these vocabularies maybe infinite.
(2) take the Fraïssé limit of some collection K of finite structures
(3) K satisfies AP and JEP, but not HP, and
(9) there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward

For second part, we need a computable version of Fraïssé limit.
For our purposes we
(1) work only with relational vocabularies, but these vocabularies maybe infinite.
(2) take the Fraïssé limit of some collection K of finite structures
(3) K satisfies AP and JEP, but not HP, and
(9) there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward

For second part, we need a computable version of Fraïssé limit.
For our purposes we
(1) work only with relational vocabularies, but these vocabularies maybe infinite.
(2) take the Fraïssé limit of some collection K of finite structures
(3) K satisfies AP and JEP, but not HP, and
(9) there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

Preliminaries Upper Bound Lower Bound

Computable Fraïssé Limits Construction Proof

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ-structures. A computable representation of K is a computable sequence \mathbb{K}, with $\mathbb{K}(i)=\left(e_{i}, n_{i}\right)$ such that

Preliminaries Upper Bound Lower Bound

Computable Fraïssé Limits Construction Proof

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ-structures. A computable representation of K is a computable sequence \mathbb{K}, with $\mathbb{K}(i)=\left(e_{i}, n_{i}\right)$ such that

Computable Fraïssé Limits Construction

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ-structures. A computable representation of K is a computable sequence \mathbb{K}, with $\mathbb{K}(i)=\left(e_{i}, n_{i}\right)$ such that

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ-structures. A computable representation of K is a computable sequence \mathbb{K}, with $\mathbb{K}(i)=\left(e_{i}, n_{i}\right)$ such that
(1) $\varphi_{e_{i}}$ is the characteristic function of the atomic diagram of a structure C_{i} isomorphic to some element of K, and $D_{n_{i}}$ is the universe of C_{i},
(3) for each $M \in K$, there is some i such that $C_{i} \cong M$.

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ-structures. A computable representation of K is a computable sequence \mathbb{K}, with $\mathbb{K}(i)=\left(e_{i}, n_{i}\right)$ such that
(1) $\varphi_{e_{i}}$ is the characteristic function of the atomic diagram of a structure C_{i} isomorphic to some element of K, and $D_{n_{i}}$ is the universe of C_{i},
(2) for each $M \in K$, there is some i such that $C_{i} \cong M$.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.
(1) The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_{i} into C_{j}.
(2) We say that \mathbb{K} has the strong embedding property if $E(\mathbb{K})$ is computable.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.
(1) The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_{i} into C_{j}.
(2) We say that \mathbb{K} has the strong embedding property if $E(\mathbb{K})$ is computable.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.
(1) The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_{i} into C_{j}.
(2) We say that \mathbb{K} has the strong embedding property if $E(\mathbb{K})$ is computable.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.
(1) The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_{i} into C_{j}.
(2) We say that \mathbb{K} has the strong embedding property if $E(\mathbb{K})$ is computable.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ-structures. Suppose that $\left(C_{i}\right)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.
(1) The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_{i} into C_{j}.
(2) We say that \mathbb{K} has the strong embedding property if $E(\mathbb{K})$ is computable.

If τ is finite, $E(\mathbb{K})$ is computable.
If τ is infinite, this need not be the case.

Preliminaries Upper Bound Lower Bound

Computable Fraïssé Limits

 ConstructionProof

Theorem

There is a computable vocabulary τ and a family K of finite τ-structures that has a computable representation \mathbb{K} of such that $E(\mathbb{K})$ is not even c.e.

Computable Fraïssé Limits Construction
Proof

Definition

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures,
- \mathbb{K} a computable representation of \mathbb{K} with $\left(C_{i}\right)_{i \in \omega}$ the corresponding sequence of structures in \mathbb{K} and
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_{i} into \mathcal{A}.

Computable Fraïssé Limits Construction Proof

Definition

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures,
- \mathbb{K} a computable representation of K with $\left(C_{i}\right)_{i \in \omega}$ the corresponding sequence of structures in \mathbb{K} and
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_{i} into \mathcal{A}.

Computable Fraïssé Limits Construction Proof

Definition

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures,
- \mathbb{K} a computable representation of K with $\left(C_{i}\right) i \in \omega$ the corresponding sequence of structures in \mathbb{K} and
- A he a Fraïssé limit of K

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_{i} into \mathcal{A}.

Computable Fraïssé Limits Construction
Proof

Definition

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures,
- \mathbb{K} a computable representation of K with $\left(C_{i}\right)_{i \in \omega}$ the corresponding sequence of structures in \mathbb{K} and
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an
embedding of C_{i} into \mathcal{A}.

Definition

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures,
- \mathbb{K} a computable representation of K with $\left(C_{i}\right)_{i \in \omega}$ the corresponding sequence of structures in \mathbb{K} and
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an
embedding of C_{i} into \mathcal{A}.

Definition

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures,
- \mathbb{K} a computable representation of K with $\left(C_{i}\right)_{i \in \omega}$ the corresponding sequence of structures in \mathbb{K} and
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_{i} into \mathcal{A}.

Preliminaries Upper Bound Lower Bound

Computable Fraïssé Limits

 Construction
Theorem (Computable Fraïssé Limit)
 Let
 - τ be a computable relational vocabulary,
 - K a family of finite τ-structures and
 - \mathbb{K} a comnutable renresentation of \mathbb{K} with the strong embedding property

Then there is a computable Fraïssé limit \mathcal{A} such that $E(\mathbb{K}, \mathcal{A})$ is computable.
In fact, we have a uniform effective procedure for passing from τ, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Preliminaries

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures and
- \mathbb{K} a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit \mathcal{A} such that $E(\mathbb{K}, \mathcal{A})$ is computable.
In fact, we have a uniform effective procedure for passing from τ, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Preliminaries Upper Bound Lower Bound

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures and
- \mathbb{K} a computable representation of K with the strong embedding property

Then there is a comnutable Fraïssé limit \mathcal{A} such that $E(\mathbb{K}, \mathcal{A})$ is computable. In fact, we have a uniform effective procedure for passing from τ, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Preliminaries Upper Bound Lower Bound

Computable Fraïssé Limits Construction
Proof

Theorem (Computable Fraïssé Limit)

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures and
- \mathbb{K} a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit \mathcal{A} such that $E(\mathbb{K}, \mathcal{A})$ is computable.
In fact, we have a uniform effective procedure for passing from τ, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Computable Fraïssé Limits Construction

Theorem (Computable Fraïssé Limit)

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures and
- \mathbb{K} a computable representation of K with the strong embedding property
Then there is a computable Fraïssé limit \mathcal{A} such that $E(\mathbb{K}, \mathcal{A})$ is computable.
In fact, we have a uniform effective procedure for passing from τ, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Theorem (Computable Fraïssé Limit)

Let

- τ be a computable relational vocabulary,
- K a family of finite τ-structures and
- \mathbb{K} a computable representation of K with the strong embedding property
Then there is a computable Fraïssé limit \mathcal{A} such that $E(\mathbb{K}, \mathcal{A})$ is computable.
In fact, we have a uniform effective procedure for passing from τ, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Construction

The construction in the second half of the theorem is based on the following idea.
For any triple of distinct elements $v, u \in P(\kappa)$, let

$$
F(v, u)=\text { least } \alpha \in \kappa \text { such that } v(\alpha) \neq u(\alpha) .
$$

For all $v_{0}, v_{1}, v_{2} \in P(\kappa)$,

Call this last property \star.

Construction

The construction in the second half of the theorem is based on the following idea.
For any triple of distinct elements $v, u \in P(\kappa)$, let

$$
F(v, u)=\text { least } \alpha \in \kappa \text { such that } v(\alpha) \neq u(\alpha)
$$

For all $v_{0}, v_{1}, v_{2} \in P(\kappa)$,

Call this last property \star.

Construction

The construction in the second half of the theorem is based on the following idea.
For any triple of distinct elements $v, u \in P(\kappa)$, let

$$
F(v, u)=\text { least } \alpha \in \kappa \text { such that } v(\alpha) \neq u(\alpha)
$$

For all $v_{0}, v_{1}, v_{2} \in P(\kappa)$,

Call this last property \star

Construction

The construction in the second half of the theorem is based on the following idea.
For any triple of distinct elements $v, u \in P(\kappa)$, let

$$
F(v, u)=\text { least } \alpha \in \kappa \text { such that } v(\alpha) \neq u(\alpha)
$$

For all $v_{0}, v_{1}, v_{2} \in P(\kappa)$,

- if $F\left(v_{0}, v_{1}\right) \neq F\left(v_{0}, v_{2}\right)$, then

$$
F\left(v_{1}, v_{2}\right)=\min \left\{F\left(v_{0}, v_{1}\right), F\left(v_{0}, v_{2}\right)\right\} .
$$

Call this last property \star.

Construction

The construction in the second half of the theorem is based on the following idea.
For any triple of distinct elements $v, u \in P(\kappa)$, let

$$
F(v, u)=\text { least } \alpha \in \kappa \text { such that } v(\alpha) \neq u(\alpha)
$$

For all $v_{0}, v_{1}, v_{2} \in P(\kappa)$,

- if $F\left(v_{0}, v_{1}\right) \neq F\left(v_{0}, v_{2}\right)$, then

$$
F\left(v_{1}, v_{2}\right)=\min \left\{F\left(v_{0}, v_{1}\right), F\left(v_{0}, v_{2}\right)\right\} .
$$

- if $F\left(v_{0}, v_{1}\right)=F\left(v_{0}, v_{2}\right)$, then $F\left(v_{1}, v_{2}\right)>F\left(v_{0}, v_{1}\right)$.

Call this last property \star.

Construction

The construction in the second half of the theorem is based on the following idea.
For any triple of distinct elements $v, u \in P(\kappa)$, let

$$
F(v, u)=\text { least } \alpha \in \kappa \text { such that } v(\alpha) \neq u(\alpha)
$$

For all $v_{0}, v_{1}, v_{2} \in P(\kappa)$,

- if $F\left(v_{0}, v_{1}\right) \neq F\left(v_{0}, v_{2}\right)$, then

$$
F\left(v_{1}, v_{2}\right)=\min \left\{F\left(v_{0}, v_{1}\right), F\left(v_{0}, v_{2}\right)\right\} .
$$

- if $F\left(v_{0}, v_{1}\right)=F\left(v_{0}, v_{2}\right)$, then $F\left(v_{1}, v_{2}\right)>F\left(v_{0}, v_{1}\right)$.

Call this last property \star.

Construction

The construction in the second half of the theorem is based on the following idea.
For any triple of distinct elements $v, u \in P(\kappa)$, let

$$
F(v, u)=\text { least } \alpha \in \kappa \text { such that } v(\alpha) \neq u(\alpha)
$$

For all $v_{0}, v_{1}, v_{2} \in P(\kappa)$,

- if $F\left(v_{0}, v_{1}\right) \neq F\left(v_{0}, v_{2}\right)$, then

$$
F\left(v_{1}, v_{2}\right)=\min \left\{F\left(v_{0}, v_{1}\right), F\left(v_{0}, v_{2}\right)\right\} .
$$

- if $F\left(v_{0}, v_{1}\right)=F\left(v_{0}, v_{2}\right)$, then $F\left(v_{1}, v_{2}\right)>F\left(v_{0}, v_{1}\right)$.

Call this last property \star.

Building on this idea consider the collection K of finite structures that satisfy the following:
(1) V, M, U partition the universe
(2) M is linearly ordered by
(3) There is a function F from $[V]^{2}$ to M.
(c) F satisfies \star.
(3 U is linearly ordered by $<^{\prime}$.
(2) U defines a partition of V.

Building on this idea consider the collection K of finite structures that satisfy the following:
(1) V, M, U partition the universe
(2) M is linearly ordered by $<$.
© There is a function F from $[V]^{2}$ to M.
(1) F satisfies \star.
(0) U is linearly ordered by $<^{\prime}$
(0) U defines a partition of V.

Building on this idea consider the collection K of finite structures that satisfy the following:
(1) V, M, U partition the universe
(2) M is linearly ordered by $<$.
(3) There is a function F from $[V]^{2}$ to M.
© F satisfies t.
(0) U is linearly ordered by $<^{\prime}$.
(0) U defines a partition of V.

Building on this idea consider the collection K of finite structures that satisfy the following:
(1) V, M, U partition the universe
(2) M is linearly ordered by $<$.
(3) There is a function F from $[V]^{2}$ to M.
(3) F satisfies \star.
(9) U is linearly ordered by
(6) U defines a partition of V.

Building on this idea consider the collection K of finite structures that satisfy the following:
(1) V, M, U partition the universe
(2) M is linearly ordered by $<$.
(3) There is a function F from $[V]^{2}$ to M.
(3) F satisfies \star.
(0) U is linearly ordered by $<^{\prime}$.
(0) U defines a partition of V.

Building on this idea consider the collection K of finite structures that satisfy the following:
(1) V, M, U partition the universe
(2) M is linearly ordered by $<$.
(3) There is a function F from $[V]^{2}$ to M.
(4) F satisfies \star.
(6) U is linearly ordered by $<^{\prime}$.
(6) U defines a partition of V.

Preliminaries

Computable Fraïssé Limits

Construction

Proof

Theorem

© K satisfies AP and JEP, and therefore has a Fraïssé limit \mathcal{A}.
(2) If ϕ is the Scott sentence of \mathcal{A}, then in all models of ϕ, $|U| \leq|V| \leq 2^{|M|}$.
© If (L, \prec) is a dense linear order with a cofinal sequence of order type κ, then there is a model of ϕ with $(M,<) \cong(L, \prec)$ and V, U both have size 2^{κ}.

Computable Fraïssé Limits Construction

Theorem

(1) K satisfies $A P$ and JEP, and therefore has a Fraïssé limit \mathcal{A}.
(2) If ϕ is the Scott sentence of \mathcal{A}, then in all models of ϕ, $|U| \leq|V| \leq 2^{|M|}$
(3) If (L, \prec) is a dense linear order with a cofinal sequence of order type κ, then there is a model of ϕ with $(M,<) \cong(L, \prec)$ and V, U both have size 2^{κ}.

Theorem

(1) K satisfies $A P$ and JEP, and therefore has a Fraïssé limit \mathcal{A}.
(2) If ϕ is the Scott sentence of \mathcal{A}, then in all models of ϕ, $|U| \leq|V| \leq 2^{|M|}$.
© If (L, \prec) is a dense linear order with a cofinal sequence of order type κ, then there is a model of ϕ with $(M,<) \cong(L, \prec)$ and V, U both have size 2^{κ}.

Theorem

(1) K satisfies $A P$ and JEP, and therefore has a Fraïssé limit \mathcal{A}.
(2) If ϕ is the Scott sentence of \mathcal{A}, then in all models of ϕ, $|U| \leq|V| \leq 2^{|M|}$.
(3) If (L, \prec) is a dense linear order with a cofinal sequence of order type κ, then there is a model of ϕ with $(M,<) \cong(L, \prec)$ and V, U both have size 2^{κ}.

```
Computable Fraïssé Limits
Construction
Proof
```

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function I.
For every $a, I(a)$ is a tuple of computable indices including the following:

Moreover, the Scott sentence ϕ_{a} of \mathcal{A}_{a} characterizes the cardinal
$\beth_{|a|}$, where $|a|$ is the ordinal with notation a.
This finishes the proof!

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function I.
For every $a, I(a)$ is a tuple of computable indices including the following:
(1) some vocabulary τ_{a}
(2) a computable representation \mathbb{K}_{a} for some collection K_{a} of finite τ_{a}-structures
(3) the atomic diagram of \mathcal{A}_{a}, where this is a Fraïssé limit of K_{a}, Moreover, the Scott sentence ϕ_{a} of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a. This finishes the proof!

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function I.
For every $a, I(a)$ is a tuple of computable indices including the following:
(1) some vocabulary τ_{a}
(2) a computable representation \mathbb{K}_{a} for some collection K_{a} of finite τ_{a}-structures
(3) the atomic diagram of \mathcal{A}_{a}, where this is a Fraïssé limit of K_{a}, Moreover, the Scott sentence ϕ_{a} of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a. This finishes the proof!

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function I.
For every $a, I(a)$ is a tuple of computable indices including the following:
(1) some vocabulary τ_{a}
(2) a computable representation \mathbb{K}_{a} for some collection K_{a} of finite τ_{a}-structures
(3) the atomic diagram of \mathcal{A}_{a}, where this is a Fraïssé limit of K_{a}, Moreover, the Scott sentence ϕ_{a} of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a. This finishes the proof!

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function I.
For every $a, I(a)$ is a tuple of computable indices including the following:
(1) some vocabulary τ_{a}
(2) a computable representation \mathbb{K}_{a} for some collection K_{a} of finite τ_{a}-structures
(3) the atomic diagram of \mathcal{A}_{a}, where this is a Fraïssé limit of K_{a}, Moreover, the Scott sentence ϕ_{a} of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a. This finishes the proof!

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function I.
For every $a, I(a)$ is a tuple of computable indices including the following:
(1) some vocabulary τ_{a}
(2) a computable representation \mathbb{K}_{a} for some collection K_{a} of finite τ_{a}-structures
(3) the atomic diagram of \mathcal{A}_{a}, where this is a Fraïssé limit of K_{a}, Moreover, the Scott sentence ϕ_{a} of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a.

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function I.
For every $a, I(a)$ is a tuple of computable indices including the following:
(1) some vocabulary τ_{a}
(2) a computable representation \mathbb{K}_{a} for some collection K_{a} of finite τ_{a}-structures
(3) the atomic diagram of \mathcal{A}_{a}, where this is a Fraïssé limit of K_{a}, Moreover, the Scott sentence ϕ_{a} of \mathcal{A}_{a} characterizes the cardinal $\beth_{|a|}$, where $|a|$ is the ordinal with notation a.
This finishes the proof!

Computable Fraïssé Limits Construction
Proof

References

- Thank you!
- Copy of these slides will be available at http://souldatosresearch.wordpress.com/ - Questions?

References

- Thank you!
- Copy of these slides will be available at http://souldatosresearch.wordpress.com/
- Questions?

References

- Thank you!
- Copy of these slides will be available at http://souldatosresearch.wordpress.com/
- Questions?

