

Aristotle Square in Thessaloniki, Greece

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

I. Souldatos Hanf Number for Computable Structures

The Hanf Number for Scott Sentences of Computable Structures

Joint Meetings 2019 Baltimore

Ioannis (Yiannis) Souldatos

I. Souldatos Hanf Number for Computable Structures

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

This is a joint project with Sergey Goncharov and Julia Knight.

▲□→ ▲ □→ ▲ □→

э

Hanf Numbers $\mathcal{L}_{\omega_1}, \omega$ Main Question Answer

Preliminaries

Definition

- The Hanf number for S is the least infinite cardinal κ such that for all φ ∈ S, if φ has models in all infinite cardinalities less than κ, then it has models of all infinite
- An L_{ω1,ω}-sentence φ characterizes an infinite cardinal κ, if φ has a model of cardinality κ, but no model of cardinality κ⁺. cardinalities.

Hanf Numbers $\mathcal{L}_{\omega_1,\omega}$ Main Question Answer

Preliminaries

Definition

- The Hanf number for S is the least infinite cardinal κ such that for all φ ∈ S, if φ has models in all infinite cardinalities less than κ, then it has models of all infinite
- An L_{ω1,ω}-sentence φ characterizes an infinite cardinal κ, if φ has a model of cardinality κ, but no model of cardinality κ⁺. cardinalities.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Hanf Numbers $\mathcal{L}_{\omega_1,\omega}$ Main Question Answer

Preliminaries

Definition

- The Hanf number for S is the least infinite cardinal κ such that for all φ ∈ S, if φ has models in all infinite cardinalities less than κ, then it has models of all infinite
- An $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ characterizes an infinite cardinal κ , if ϕ has a model of cardinality κ , but no model of cardinality κ^+ . cardinalities.

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

Hanf Numbers $\mathcal{L}_{\omega_{1}}, \omega$ Main Question Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_1,\omega}$ -sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1$, then it has models of all infinite cardinalities.

Theorem (Malitz, Baumgartner)

For every $\alpha < \omega_1$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} that has models of size \beth_{α} , but no larger.

Thus, \beth_{ω_1} is the *Hanf number* for (complete) $\mathcal{L}_{\omega_1,\omega}$ -sentences.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hanf Numbers $\mathcal{L}_{\omega_{1},\omega}$ Main Question Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_1,\omega}$ -sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1$, then it has models of all infinite cardinalities.

Theorem (Malitz, Baumgartner)

For every $\alpha < \omega_1$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} that has models of size \beth_{α} , but no larger.

Thus, \beth_{ω_1} is the *Hanf number* for (complete) $\mathcal{L}_{\omega_1,\omega}$ -sentences.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hanf Numbers $\mathcal{L}_{\omega_{1}}, \omega$ Main Question Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_1,\omega}$ -sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1$, then it has models of all infinite cardinalities.

Theorem (Malitz, Baumgartner)

For every $\alpha < \omega_1$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} that has models of size \beth_{α} , but no larger.

Thus, \beth_{ω_1} is the *Hanf number* for (complete) $\mathcal{L}_{\omega_1,\omega}$ -sentences.

Hanf Numbers $\mathcal{L}_{\omega_{1}}, \omega$ Main Question Answer

Hanf Number

Theorem (Morley, López-Escobar)

Let ϕ be an $\mathcal{L}_{\omega_1,\omega}$ -sentence. If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1$, then it has models of all infinite cardinalities.

Theorem (Malitz, Baumgartner)

For every $\alpha < \omega_1$, there exists a complete $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_{α} that has models of size \beth_{α} , but no larger.

Thus, \beth_{ω_1} is the *Hanf number* for (complete) $\mathcal{L}_{\omega_1,\omega}$ -sentences.

Main Question (Sy Friedman)

What is the Hanf number for the Scott sentences of computable structures?

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Hanf Numbers $\mathcal{L}_{\omega_1,\omega}$ Main Question Answer

Answer

Theorem (S.Goncharov, J.Knight, S.)

- (a) Let \mathcal{A} be a computable structure in a computable vocabulary τ , and let ϕ be a Scott sentence for \mathcal{A} . If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1^{CK}$, then it has models of all infinite cardinalities.
- (b) There exists a partial computable function I such that for each a ∈ O, I(a) is a tuple of computable indices for several objects, among which are a relational vocabulary τ_a and the atomic diagram of a τ_a-structure A_a. The Scott sentence of A_a characterizes the cardinal □_{|a|}, where |a| is the ordinal with notation a.

Hanf Numbers $\mathcal{L}_{\omega_1,\omega}$ Main Question Answer

Answer

Theorem (S.Goncharov, J.Knight, S.)

- (a) Let \mathcal{A} be a computable structure in a computable vocabulary τ , and let ϕ be a Scott sentence for \mathcal{A} . If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1^{CK}$, then it has models of all infinite cardinalities.
- (b) There exists a partial computable function I such that for each $a \in \mathcal{O}$, I(a) is a tuple of computable indices for several objects, among which are a relational vocabulary τ_a and the atomic diagram of a τ_a -structure \mathcal{A}_a . The Scott sentence of \mathcal{A}_a characterizes the cardinal $\beth_{|a|}$, where |a| is the ordinal with notation a.

Hanf Numbers $\mathcal{L}_{\omega_1,\omega}$ Main Question Answer

Answer

Theorem (S.Goncharov, J.Knight, S.)

- (a) Let \mathcal{A} be a computable structure in a computable vocabulary τ , and let ϕ be a Scott sentence for \mathcal{A} . If ϕ has models of cardinality \beth_{α} for all $\alpha < \omega_1^{CK}$, then it has models of all infinite cardinalities.
- (b) There exists a partial computable function I such that for each a ∈ O, I(a) is a tuple of computable indices for several objects, among which are a relational vocabulary τ_a and the atomic diagram of a τ_a-structure A_a. The Scott sentence of A_a characterizes the cardinal □_{|a|}, where |a| is the ordinal with notation a.

Corollary

The Hanf number for Scott sentences of computable structures is $\beth_{\omega_1^{CK}}$.

▲□→ ▲ □→ ▲ □→

э

Computable Structures Morley-Barwise Theorem Proof

Definition

- ω_1^{CK} is the least non-computable ordinal.
- $L_{\omega_1^{CK}}$ denotes the constructible universe at height ω_1^{CK} .
- Let τ be a computable vocabulary. A τ-structure A is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_1,\omega}(\tau)$ -sentence is *computable* if the infinite disjunctions and conjunctions are over c.e. sets.

・ 同 ト ・ ヨ ト ・ ヨ ト

Computable Structures Morley-Barwise Theorem Proof

Definition

- $\omega_1^{\rm CK}$ is the least non-computable ordinal.
- $L_{\omega_1^{CK}}$ denotes the constructible universe at height ω_1^{CK} .
- Let τ be a computable vocabulary. A τ-structure A is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_1,\omega}(\tau)$ -sentence is *computable* if the infinite disjunctions and conjunctions are over c.e. sets.

Computable Structures Morley-Barwise Theorem Proof

Definition

- ω_1^{CK} is the least non-computable ordinal.
- $L_{\omega_1^{CK}}$ denotes the constructible universe at height ω_1^{CK} .
- Let τ be a computable vocabulary. A τ -structure \mathcal{A} is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_1,\omega}(\tau)$ -sentence is *computable* if the infinite disjunctions and conjunctions are over c.e. sets.

Computable Structures Morley-Barwise Theorem Proof

Definition

- ω_1^{CK} is the least non-computable ordinal.
- $L_{\omega_1^{CK}}$ denotes the constructible universe at height ω_1^{CK} .
- Let τ be a computable vocabulary. A τ -structure \mathcal{A} is computable if its atomic diagram is computable.
- An L_{ω1,ω}(τ)-sentence is computable if the infinite disjunctions and conjunctions are over c.e. sets.

Computable Structures Morley-Barwise Theorem Proof

Definition

- ω_1^{CK} is the least non-computable ordinal.
- $L_{\omega_1^{CK}}$ denotes the constructible universe at height ω_1^{CK} .
- Let τ be a computable vocabulary. A τ -structure \mathcal{A} is computable if its atomic diagram is computable.
- An $\mathcal{L}_{\omega_1,\omega}(\tau)$ -sentence is *computable* if the infinite disjunctions and conjunctions are over c.e. sets.

Computable Structures Morley-Barwise Theorem Proof

Facts

- $L_{\omega_1^{c\kappa}}$ is an admissible set.
- The subsets of ω in $L_{\omega_1^{CK}}$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega} \zeta \kappa$.
- All computable $\mathcal{L}_{\omega_1,\omega}$ -formulas in a computable vocabulary are elements of $L_{\omega_1}^{CK}$.

Computable Structures Morley-Barwise Theorem Proof

Facts

- $L_{\omega_1^{c_{\kappa}}}$ is an admissible set.
- The subsets of ω in $L_{\omega_1^{CK}}$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega_1^{CK}}$.
- All computable $\mathcal{L}_{\omega_1,\omega}$ -formulas in a computable vocabulary are elements of $L_{\omega_1}^{CK}$.

Computable Structures Morley-Barwise Theorem Proof

Facts

- $L_{\omega_1^{c_{\kappa}}}$ is an admissible set.
- The subsets of ω in ${\cal L}_{\omega_1^{CK}}$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega_1^{CK}}$.
- All computable $\mathcal{L}_{\omega_1,\omega}$ -formulas in a computable vocabulary are elements of $L_{\omega_1}^{CK}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Computable Structures Morley-Barwise Theorem Proof

Facts

- $L_{\omega_1^{c_{\kappa}}}$ is an admissible set.
- The subsets of ω in ${\cal L}_{\omega_1^{CK}}$ are exactly the hyperarithmetical sets.
- All computable structures are elements of $L_{\omega_1^{CK}}$.
- All computable $\mathcal{L}_{\omega_1,\omega}$ -formulas in a computable vocabulary are elements of $L_{\omega_1^{CK}}$.

Computable Structures Morley-Barwise Theorem Proof

Theorem (Morley, Barwise)

Let A be a countable admissible set with $o(A) = \gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_1,\omega} \cap A$. Then either

• ϕ characterizes some $\aleph_{\alpha} < \beth_{\gamma}$, or

• ϕ has arbitrarily large models.

Apply this theorem for $A = L_{\omega_1^{CK}}$ and ϕ a computable $\mathcal{L}_{\omega_1,\omega}$ -sentence.

Corollary

The Hanf number for computable $\mathcal{L}_{\omega_1,\omega}$ -sentences is $\leq \beth_{\omega}$ ск.

Computable Structures Morley-Barwise Theorem Proof

Theorem (Morley, Barwise)

Let A be a countable admissible set with $o(A) = \gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_1,\omega} \cap A$. Then either

• ϕ characterizes some $\aleph_{lpha} < \beth_{\gamma}$, or

• ϕ has arbitrarily large models.

Apply this theorem for $A=L_{\omega_1^{CK}}$ and ϕ a computable $\mathcal{L}_{\omega_1,\omega}$ -sentence.

Corollary

The Hanf number for computable $\mathcal{L}_{\omega_1,\omega}$ -sentences is $\leq \beth_{\omega}$ ск.

Computable Structures Morley-Barwise Theorem Proof

Theorem (Morley, Barwise)

Let A be a countable admissible set with $o(A) = \gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_1,\omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{lpha} < \beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for ${\sf A}={\sf L}_{\omega_1^{\sf CK}}$ and ϕ a computable ${\cal L}_{\omega_1,\omega}$ -sentence.

Corollary

The Hanf number for computable $\mathcal{L}_{\omega_1,\omega}$ -sentences is $\leq \beth_{\omega}$ ск.

Computable Structures Morley-Barwise Theorem Proof

Theorem (Morley, Barwise)

Let A be a countable admissible set with $o(A) = \gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_1,\omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{lpha} < \beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for ${\sf A}={\sf L}_{\omega_1^{\sf CK}}$ and ϕ a computable ${\cal L}_{\omega_1,\omega}$ -sentence.

Corollary

The Hanf number for computable $\mathcal{L}_{\omega_1,\omega}$ -sentences is $\leq \beth_{\omega}$ ск.

Computable Structures Morley-Barwise Theorem Proof

Theorem (Morley, Barwise)

Let A be a countable admissible set with $o(A) = \gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_1,\omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{lpha} < \beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for $A=L_{\omega_1^{CK}}$ and ϕ a computable $\mathcal{L}_{\omega_1,\omega}$ -sentence.

Corollary

The Hanf number for computable $\mathcal{L}_{\omega_1,\omega}$ -sentences is $\leq \beth_{\omega}$ ск.

Computable Structures Morley-Barwise Theorem Proof

Theorem (Morley, Barwise)

Let A be a countable admissible set with $o(A) = \gamma$, and let ϕ be a sentence of $\mathcal{L}_{\omega_1,\omega} \cap A$. Then either

- ϕ characterizes some $\aleph_{lpha} < \beth_{\gamma}$, or
- ϕ has arbitrarily large models.

Apply this theorem for $A=L_{\omega_1^{CK}}$ and ϕ a computable $\mathcal{L}_{\omega_1,\omega}$ -sentence.

Corollary

The Hanf number for computable $\mathcal{L}_{\omega_1,\omega}$ -sentences is $\leq \beth_{\omega_i} c_{\kappa}$.

Computable Structures Morley-Barwise Theorem Proof

This would suffice for the first part of the theorem, but there are

computable structures with no computable Scott sentence. We bypass this problem by expanding the vocabulary.

_emma

Let τ be a computable vocabulary, and let A be a computable τ -structure with Scott sentence ϕ . There is a computable vocabulary $\tau^* \supseteq \tau$ with a computable infinitary τ^* -sentence ϕ^* such that for any τ -structure \mathcal{B} ,

 $\mathcal{B} \models \phi$ iff \mathcal{B} has a τ^* -expansion \mathcal{B}^* satisfying ϕ^* .

(日) (同) (日) (日)

Computable Structures Morley-Barwise Theorem Proof

This would suffice for the first part of the theorem, **but** there are computable structures with no computable Scott sentence.

We bypass this problem by expanding the vocabulary.

_emma

Let τ be a computable vocabulary, and let \mathcal{A} be a computable τ -structure with Scott sentence ϕ . There is a computable vocabulary $\tau^* \supseteq \tau$ with a computable infinitary τ^* -sentence ϕ^* such that for any τ -structure \mathcal{B} ,

 $\mathcal{B}\models\phi$ iff \mathcal{B} has a au^* -expansion \mathcal{B}^* satisfying ϕ^* .

This would suffice for the first part of the theorem, **but** there are computable structures with no computable Scott sentence. We bypass this problem by expanding the vocabulary.

.emma

Let τ be a computable vocabulary, and let A be a computable τ -structure with Scott sentence ϕ . There is a computable vocabulary $\tau^* \supseteq \tau$ with a computable infinitary τ^* -sentence ϕ^* such that for any τ -structure \mathcal{B} ,

 $\mathcal{B}\models\phi$ iff \mathcal{B} has a au^* -expansion \mathcal{B}^* satisfying ϕ^* .

This would suffice for the first part of the theorem, **but** there are computable structures with no computable Scott sentence. We bypass this problem by expanding the vocabulary.

Lemma

Let τ be a computable vocabulary, and let \mathcal{A} be a computable τ -structure with Scott sentence ϕ . There is a computable vocabulary $\tau^* \supseteq \tau$ with a computable infinitary τ^* -sentence ϕ^* such that for any τ -structure \mathcal{B} ,

 $\mathcal{B} \models \phi$ iff \mathcal{B} has a τ^* -expansion \mathcal{B}^* satisfying ϕ^* .

4 日 2 4 周 2 4 月 2 4 月 2 4

Computable Structures Morley-Barwise Theorem Proof

Proof: Hanf Number is $\leq \beth_{\omega_{i}^{CK}}$.

- From the original Scott sentence ϕ , in a computable vocabulary τ , pass to τ^* and ϕ^* .
- For each α < ω₁^{CK}, the sentence φ has a model B of cardinality □_α. Expand these models to models of φ^{*}.
- By Morley-Barwise Theorem, ϕ^* has arbitrarily large models.
- The au-reducts of all these models satisfy ϕ .
- Therefore, ϕ has arbitrarily large models.

Computable Structures Morley-Barwise Theorem Proof

Proof: Hanf Number is $\leq \beth_{\omega, \zeta \kappa}$.

- From the original Scott sentence ϕ , in a computable vocabulary τ , pass to τ^* and ϕ^* .
- For each α < ω₁^{CK}, the sentence φ has a model B of cardinality □_α. Expand these models to models of φ^{*}.
- By Morley-Barwise Theorem, ϕ^* has arbitrarily large models.
- The au-reducts of all these models satisfy ϕ .
- Therefore, ϕ has arbitrarily large models.

Computable Structures Morley-Barwise Theorem Proof

Proof: Hanf Number is $\leq \beth_{\omega, \zeta \kappa}$.

- From the original Scott sentence ϕ , in a computable vocabulary τ , pass to τ^* and ϕ^* .
- For each α < ω₁^{CK}, the sentence φ has a model B of cardinality □_α. Expand these models to models of φ^{*}.
- ullet By Morley-Barwise Theorem, ϕ^* has arbitrarily large models.
- The au-reducts of all these models satisfy ϕ .
- Therefore, ϕ has arbitrarily large models.

Computable Structures Morley-Barwise Theorem Proof

Proof: Hanf Number is $\leq \beth_{\omega_{i}^{CK}}$.

- From the original Scott sentence ϕ , in a computable vocabulary τ , pass to τ^* and ϕ^* .
- For each α < ω₁^{CK}, the sentence φ has a model B of cardinality □_α. Expand these models to models of φ^{*}.
- By Morley-Barwise Theorem, ϕ^* has arbitrarily large models.
- The au-reducts of all these models satisfy ϕ .
- Therefore, ϕ has arbitrarily large models.

Computable Structures Morley-Barwise Theorem Proof

Proof: Hanf Number is $\leq \beth_{\omega_{i}^{CK}}$.

- From the original Scott sentence ϕ , in a computable vocabulary τ , pass to τ^* and ϕ^* .
- For each α < ω₁^{CK}, the sentence φ has a model B of cardinality □_α. Expand these models to models of φ^{*}.
- By Morley-Barwise Theorem, ϕ^* has arbitrarily large models.
- The au-reducts of all these models satisfy ϕ .
- Therefore, ϕ has arbitrarily large models.

Computable Structures Morley-Barwise Theorem Proof

Proof: Hanf Number is $\leq \beth_{\omega_{i}^{CK}}$.

- From the original Scott sentence ϕ , in a computable vocabulary τ , pass to τ^* and ϕ^* .
- For each α < ω₁^{CK}, the sentence φ has a model B of cardinality □_α. Expand these models to models of φ^{*}.
- By Morley-Barwise Theorem, ϕ^* has arbitrarily large models.
- The au-reducts of all these models satisfy ϕ .
- Therefore, ϕ has arbitrarily large models.

Computable Fraïssé Limits Construction Proof

For second part, we need a *computable* version of Fraïssé limit.

For our purposes we

- work only with relational vocabularies, but these vocabularies maybe infinite.
- take the Fraïssé limit of some collection K of finite structures
- K satisfies AP and JEP, but not HP, and
- there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

Computable Fraïssé Limits Construction Proof

For second part, we need a *computable* version of Fraïssé limit. For our purposes we

- work only with relational vocabularies, but these vocabularies maybe infinite.
- 2 take the Fraïssé limit of some collection K of finite structures
- 3 K satisfies AP and JEP, but not HP, and
- there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

Computable Fraïssé Limits Construction Proof

For second part, we need a *computable* version of Fraïssé limit. For our purposes we

- work only with relational vocabularies, but these vocabularies maybe infinite.
- 2 take the Fraïssé limit of some collection K of finite structures
- 3 K satisfies AP and JEP, but not HP, and
- Ithere are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

Computable Fraïssé Limits Construction Proof

For second part, we need a *computable* version of Fraïssé limit. For our purposes we

- work only with relational vocabularies, but these vocabularies maybe infinite.
- 2 take the Fraïssé limit of some collection K of finite structures
- 3 K satisfies AP and JEP, but not HP, and
- Ithere are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

Computable Fraïssé Limits Construction Proof

For second part, we need a *computable* version of Fraïssé limit. For our purposes we

- work only with relational vocabularies, but these vocabularies maybe infinite.
- 2 take the Fraïssé limit of some collection K of finite structures
- 3 K satisfies AP and JEP, but not HP, and
- there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

Computable Fraïssé Limits Construction Proof

For second part, we need a *computable* version of Fraïssé limit. For our purposes we

- work only with relational vocabularies, but these vocabularies maybe infinite.
- 2 take the Fraïssé limit of some collection K of finite structures
- 3 K satisfies AP and JEP, but not HP, and
- there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

Computable Fraïssé Limits Construction Proof

For second part, we need a *computable* version of Fraïssé limit. For our purposes we

- work only with relational vocabularies, but these vocabularies maybe infinite.
- 2 take the Fraïssé limit of some collection K of finite structures
- 3 K satisfies AP and JEP, but not HP, and
- there are some computability assumptions on K.

The existence and uniqueness of the Fraïssé limit are rather straightforward.

(日) (周) (王) (王)

Computable Fraïssé Limits Construction Proof

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ -structures. A computable representation of K is a computable sequence \mathbb{K} , with $\mathbb{K}(i) = (e_i, n_i)$ such that

- φ_{ei} is the characteristic function of the atomic diagram of a structure C_i isomorphic to some element of K, and D_{ni} is the universe of C_i,
- \bigcirc for each $M \in K$, there is some *i* such that $C_i \cong M$.

Computable Fraïssé Limits Construction Proof

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ -structures. A computable representation of K is a computable sequence \mathbb{K} , with $\mathbb{K}(i) = (e_i, n_i)$ such that

- φ_{ei} is the characteristic function of the atomic diagram of a structure C_i isomorphic to some element of K, and D_{ni} is the universe of C_i,
- \bigcirc for each $M \in K$, there is some *i* such that $C_i \cong M$.

Computable Fraïssé Limits Construction Proof

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ -structures. A computable representation of K is a computable sequence \mathbb{K} , with $\mathbb{K}(i) = (e_i, n_i)$ such that

 φ_{ei} is the characteristic function of the atomic diagram of a structure C_i isomorphic to some element of K, and D_{ni} is the universe of C_i,

3) for each $M \in K$, there is some i such that $C_i \cong M$.

・ロト ・四ト ・ヨト ・ヨト

Computable Fraïssé Limits Construction Proof

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ -structures. A computable representation of K is a computable sequence \mathbb{K} , with $\mathbb{K}(i) = (e_i, n_i)$ such that

- φ_{e_i} is the characteristic function of the atomic diagram of a structure C_i isomorphic to some element of K, and D_{n_i} is the universe of C_i ,
- ② for each M ∈ K, there is some *i* such that $C_i \cong M$.

Computable Fraïssé Limits Construction Proof

Definition (Computable representation)

Let τ be a computable relational vocabulary, and let K be a (countable) family of finite τ -structures. A computable representation of K is a computable sequence \mathbb{K} , with $\mathbb{K}(i) = (e_i, n_i)$ such that

- φ_{e_i} is the characteristic function of the atomic diagram of a structure C_i isomorphic to some element of K, and D_{n_i} is the universe of C_i ,
- **2** for each $M \in K$, there is some *i* such that $C_i \cong M$.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

- The corresponding embedding relation, denoted by E(K), is the set of triples (i, j, f) such that f is an embedding of C_i into C_i.
- We say that K has the strong embedding property if E(K) is computable.

If au is finite, $E(\mathbb{K})$ is computable. If au is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

- The corresponding embedding relation, denoted by E(K), is the set of triples (i, j, f) such that f is an embedding of C_i into C_i.
- We say that K has the strong embedding property if E(K) is computable.

If au is finite, $E(\mathbb{K})$ is computable. If au is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

The corresponding embedding relation, denoted by E(K), is the set of triples (i, j, f) such that f is an embedding of C_i into C_i.

 We say that K has the strong embedding property if E(K) is computable.

If au is finite, $E(\mathbb{K})$ is computable. If au is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

- The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_i into C_j .
- ② We say that K has the strong embedding property if E(K) is computable.

If τ is finite, $E(\mathbb{K})$ is computable. If τ is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

- The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_i into C_j .
- **2** We say that \mathbb{K} has the *strong embedding property* if $E(\mathbb{K})$ is computable.

If au is finite, $E(\mathbb{K})$ is computable. If au is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

- The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_i into C_j .
- **2** We say that \mathbb{K} has the *strong embedding property* if $E(\mathbb{K})$ is computable.

If au is finite, $E(\mathbb{K})$ is computable. If au is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

- The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_i into C_j .
- 3 We say that \mathbb{K} has the strong embedding property if $E(\mathbb{K})$ is computable.

If τ is finite, $E(\mathbb{K})$ is computable. If τ is infinite, this need not be the case

Computable Fraïssé Limits Construction Proof

Definition (Strong Embedding Property)

Let τ be a computable relational vocabulary, and let K be a family of finite τ -structures. Suppose that $(C_i)_{i \in \omega}$ is the sequence of structures given by a computable representation \mathbb{K} of K.

- The corresponding embedding relation, denoted by $E(\mathbb{K})$, is the set of triples (i, j, f) such that f is an embedding of C_i into C_j .
- 3 We say that \mathbb{K} has the strong embedding property if $E(\mathbb{K})$ is computable.

If τ is finite, $E(\mathbb{K})$ is computable. If τ is infinite, this need not be the case.

Computable Fraïssé Limits Construction Proof

Theorem

There is a computable vocabulary τ and a family K of finite τ -structures that has a computable representation \mathbb{K} of such that $E(\mathbb{K})$ is not even c.e.

< □→ < □→ < □→

Computable Fraïssé Limits Construction Proof

Definition

Let

- ullet au be a computable relational vocabulary,
- K a family of finite au-structures,
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_i into \mathcal{A} .

Computable Fraïssé Limits Construction Proof

Definition

Let

- ullet au be a computable relational vocabulary,
- K a family of finite τ-structures,
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_i into \mathcal{A} .

Computable Fraïssé Limits Construction Proof

Definition

Let

- ullet au be a computable relational vocabulary,
- \boldsymbol{K} a family of finite au-structures,
- ${\mathcal A}$ be a Fraïssé limit of ${m K}$.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_i into \mathcal{A} .

Computable Fraïssé Limits Construction Proof

Definition

Let

- ullet au be a computable relational vocabulary,
- K a family of finite au-structures,
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_i into \mathcal{A} .

Computable Fraïssé Limits Construction Proof

Definition

Let

- ullet au be a computable relational vocabulary,
- K a family of finite au-structures,
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_i into \mathcal{A} .

Computable Fraïssé Limits Construction Proof

Definition

Let

- ullet au be a computable relational vocabulary,
- K a family of finite au-structures,
- \mathcal{A} be a Fraïssé limit of K.

Denote by $E(\mathbb{K}, \mathcal{A})$ the set of pairs (i, f) such that f is an embedding of C_i into \mathcal{A} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- au be a computable relational vocabulary,
- K a family of finite au-structures and
- K a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit $\mathcal A$ such that $E(\mathbb K,\mathcal A)$ is computable.

In fact, we have a uniform effective procedure for passing from τ , \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- au be a computable relational vocabulary,
- K a family of finite τ-structures and
- K a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit $\mathcal A$ such that $E(\mathbb K,\mathcal A)$ is computable.

In fact, we have a uniform effective procedure for passing from τ , \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

・ロト ・ 同ト ・ ヨト ・ ヨ

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- au be a computable relational vocabulary,
- K a family of finite au-structures and
- K a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit $\mathcal A$ such that $E(\mathbb K,\mathcal A)$ is computable.

In fact, we have a uniform effective procedure for passing from τ , \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

・ロト ・ 同ト ・ ヨト ・ ヨ

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- au be a computable relational vocabulary,
- K a family of finite au-structures and
- K a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit $\mathcal A$ such that $\mathsf E(\mathbb K,\mathcal A)$ is computable.

In fact, we have a uniform effective procedure for passing from au, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

(1日) (1日) (1日)

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- au be a computable relational vocabulary,
- K a family of finite au-structures and
- K a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit \mathcal{A} such that $E(\mathbb{K},\mathcal{A})$ is computable.

In fact, we have a uniform effective procedure for passing from au, \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

Computable Fraïssé Limits Construction Proof

Theorem (Computable Fraïssé Limit)

Let

- au be a computable relational vocabulary,
- K a family of finite au-structures and
- K a computable representation of K with the strong embedding property

Then there is a computable Fraïssé limit \mathcal{A} such that $E(\mathbb{K}, \mathcal{A})$ is computable.

In fact, we have a uniform effective procedure for passing from τ , \mathbb{K} and $E(\mathbb{K})$ to $D(\mathcal{A})$ and $E(\mathbb{K}, \mathcal{A})$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Computable Fraïssé Limits Construction Proof

Construction

The construction in the second half of the theorem is based on the following idea.

For any triple of distinct elements $v, u \in P(\kappa)$, let

F(v, u) = least $\alpha \in \kappa$ such that $v(\alpha) \neq u(\alpha)$.

```
For all v_0, v_1, v_2 \in P(\kappa),
```

```
• if F(v_0, v_1) \neq F(v_0, v_2), then
```

 $F(v_1, v_2) = \min\{F(v_0, v_1), F(v_0, v_2)\}.$

• if $F(v_0, v_1) = F(v_0, v_2)$, then $F(v_1, v_2) > F(v_0, v_1)$. Call this last property \bigstar .

< ロ > < 同 > < 回 > < 回 >

Computable Fraïssé Limits Construction Proof

Construction

The construction in the second half of the theorem is based on the following idea.

For any triple of distinct elements $v, u \in P(\kappa)$, let

$$F(v, u) = \text{ least } \alpha \in \kappa \text{ such that } v(\alpha) \neq u(\alpha).$$

For all
$$v_0, v_1, v_2 \in P(\kappa)$$
,

• if $F(v_0, v_1) \neq F(v_0, v_2)$, then

 $F(v_1, v_2) = \min\{F(v_0, v_1), F(v_0, v_2)\}.$

• if $F(v_0, v_1) = F(v_0, v_2)$, then $F(v_1, v_2) > F(v_0, v_1)$.

Call this last property \bigstar .

Computable Fraïssé Limits Construction Proof

Construction

The construction in the second half of the theorem is based on the following idea.

For any triple of distinct elements $v, u \in P(\kappa)$, let

$${\sf F}({\sf v},{\sf u})={\sf \ least} \ lpha\in\kappa {\sf \ such \ that \ }{\sf v}(lpha)
eq{\sf u}(lpha).$$

For all $v_0, v_1, v_2 \in P(\kappa)$,

• if $F(v_0, v_1) \neq F(v_0, v_2)$, then

 $F(v_1, v_2) = \min\{F(v_0, v_1), F(v_0, v_2)\}.$

• if $F(v_0, v_1) = F(v_0, v_2)$, then $F(v_1, v_2) > F(v_0, v_1)$.

Call this last property ★.

Computable Fraïssé Limits Construction Proof

Construction

The construction in the second half of the theorem is based on the following idea.

For any triple of distinct elements $v, u \in P(\kappa)$, let

$$F(v, u) =$$
 least $\alpha \in \kappa$ such that $v(\alpha) \neq u(\alpha)$.

For all $v_0, v_1, v_2 \in P(\kappa)$,

• if $F(v_0, v_1) \neq F(v_0, v_2)$, then $F(v_1, v_2) = \min\{F(v_0, v_1), F(v_0, v_2)\}.$

• if $F(v_0, v_1) = F(v_0, v_2)$, then $F(v_1, v_2) > F(v_0, v_1)$. Call this last property \bigstar .

(日) (周) (王) (王)

Computable Fraïssé Limits Construction Proof

Construction

The construction in the second half of the theorem is based on the following idea.

For any triple of distinct elements $v, u \in P(\kappa)$, let

$$F(v, u) =$$
 least $\alpha \in \kappa$ such that $v(\alpha) \neq u(\alpha)$.

For all $v_0, v_1, v_2 \in P(\kappa)$, • if $F(v_0, v_1) \neq F(v_0, v_2)$, then $F(v_1, v_2) = \min\{F(v_0, v_1), F(v_0, v_2)\}.$ • if $F(v_0, v_1) = F(v_0, v_2)$, then $F(v_1, v_2) > F(v_0, v_1).$ Call this last property \bigstar .

4 日 2 4 周 2 4 月 2 4 月 2 4

Computable Fraïssé Limits Construction Proof

Construction

The construction in the second half of the theorem is based on the following idea.

For any triple of distinct elements $v, u \in P(\kappa)$, let

$$F(v, u) =$$
 least $\alpha \in \kappa$ such that $v(\alpha) \neq u(\alpha)$.

For all $v_0, v_1, v_2 \in P(\kappa)$, • if $F(v_0, v_1) \neq F(v_0, v_2)$, then $F(v_1, v_2) = \min\{F(v_0, v_1), F(v_0, v_2)\}.$ • if $F(v_0, v_1) = F(v_0, v_2)$, then $F(v_1, v_2) > F(v_0, v_1)$. Call this last property \bigstar .

4 日 2 4 周 2 4 月 2 4 月 2 4

Computable Fraïssé Limits Construction Proof

Construction

The construction in the second half of the theorem is based on the following idea.

For any triple of distinct elements $v, u \in P(\kappa)$, let

$$F(v, u) =$$
 least $\alpha \in \kappa$ such that $v(\alpha) \neq u(\alpha)$.

For all $v_0, v_1, v_2 \in P(\kappa)$, • if $F(v_0, v_1) \neq F(v_0, v_2)$, then $F(v_1, v_2) = \min\{F(v_0, v_1), F(v_0, v_2)\}.$ • if $F(v_0, v_1) = F(v_0, v_2)$, then $F(v_1, v_2) > F(v_0, v_1)$. Call this last property \bigstar .

マロト イラト イラト

- V, M, U partition the universe
- 2 M is linearly ordered by <
- 3 There is a function F from $[V]^2$ to M.
- In the second second
- U is linearly ordered by <'.
- *U* defines a partition of *V*.

< ロ > < 同 > < 回 > < 回 >

- V, M, U partition the universe
- 2 M is linearly ordered by <.
- 3 There is a function F from $[V]^2$ to M.
- In the second second
- U is linearly ordered by <'.
- U defines a partition of V.

- V, M, U partition the universe
- 2 M is linearly ordered by <.
- There is a function F from $[V]^2$ to M.
- In the second second
- U is linearly ordered by <'.
- U defines a partition of V.

・ 同 ト ・ ヨ ト ・ ヨ ト

- V, M, U partition the universe
- 2 M is linearly ordered by <.
- There is a function F from $[V]^2$ to M.
- F satisfies ★.
- U is linearly ordered by <'.
- U defines a partition of V.

< 同 > < 三 > < 三 >

- V, M, U partition the universe
- 2 M is linearly ordered by <.
- There is a function F from $[V]^2$ to M.
- 🕚 F satisfies ★
- U is linearly ordered by <'.
- U defines a partition of V.

・ 同 ト ・ ヨ ト ・ ヨ ト

- V, M, U partition the universe
- 2 M is linearly ordered by <.
- There is a function F from $[V]^2$ to M.
- 🕚 F satisfies ★
- U is linearly ordered by <'.
- U defines a partition of V.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Computable Fraïssé Limits Construction Proof

Theorem

- K satisfies AP and JEP, and therefore has a Fraissé limit A.
- If φ is the Scott sentence of A, then in all models of φ, |U| ≤ |V| ≤ 2^{|M|}.
- If (L, ≺) is a dense linear order with a cofinal sequence of order type κ, then there is a model of φ with (M, <) ≅ (L, ≺) and V, U both have size 2^κ.

< ロ > < 同 > < 回 > < 回 >

Computable Fraïssé Limits Construction Proof

Theorem

- **()** *K* satisfies AP and JEP, and therefore has a Fraïssé limit A.
- If φ is the Scott sentence of A, then in all models of φ, |U| ≤ |V| ≤ 2^{|M|}.
- If (L, ≺) is a dense linear order with a cofinal sequence of order type κ, then there is a model of φ with (M, <) ≅ (L, ≺) and V, U both have size 2^κ.

Computable Fraïssé Limits Construction Proof

Theorem

- **1** K satisfies AP and JEP, and therefore has a Fraïssé limit A.
- 3 If ϕ is the Scott sentence of A, then in all models of ϕ , $|U| \leq |V| \leq 2^{|M|}$.

If (L, ≺) is a dense linear order with a cofinal sequence of order type κ, then there is a model of φ with (M, <) ≅ (L, ≺) and V, U both have size 2^κ.

Computable Fraïssé Limits Construction Proof

Theorem

- **(** *K* satisfies AP and JEP, and therefore has a Fraïssé limit A.
- 2 If ϕ is the Scott sentence of A, then in all models of ϕ , $|U| \leq |V| \leq 2^{|M|}$.
- If (L, ≺) is a dense linear order with a cofinal sequence of order type κ, then there is a model of φ with (M, <) ≅ (L, ≺) and V, U both have size 2^κ.

(4月) (1日) (日)

Based on this idea we build by computable transfinite induction on ordinal notations $a \in O$ the following function *I*.

For every *a*, *I*(*a*) is a tuple of computable indices including the following:

- lacksquare some vocabulary au_a
- a computable representation K_a for some collection K_a of finite τ_a-structures
- the atomic diagram of A_a , where this is a Fraïssé limit of K_a , Moreover, the Scott sentence ϕ_a of A_a characterizes the cardinal $\beth_{|a|}$, where |a| is the ordinal with notation a. This finishes the proof!

< ロ > < 同 > < 回 > < 回 >

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function *I*.

For every a, I(a) is a tuple of computable indices including the following:

(1) some vocabulary au_a

② a computable representation \mathbb{K}_a for some collection K_a of finite τ_a -structures

(a) the atomic diagram of A_a , where this is a Fraïssé limit of K_a , Moreover, the Scott sentence ϕ_a of A_a characterizes the cardinal $\Box_{|a|}$, where |a| is the ordinal with notation a. This finishes the proof!

Based on this idea we build by computable transfinite induction on ordinal notations $a \in O$ the following function *I*.

For every a, I(a) is a tuple of computable indices including the following:

() some vocabulary τ_a

② a computable representation \mathbb{K}_a for some collection K_a of finite τ_a -structures

(a) the atomic diagram of A_a , where this is a Fraïssé limit of K_a , Moreover, the Scott sentence ϕ_a of A_a characterizes the cardinal $\Box_{|a|}$, where |a| is the ordinal with notation a. This finishes the proof!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function *I*.

For every a, I(a) is a tuple of computable indices including the following:

- () some vocabulary τ_a
- ② a computable representation \mathbb{K}_a for some collection K_a of finite τ_a -structures

 \bigcirc the atomic diagram of \mathcal{A}_a , where this is a Fraïssé limit of \mathcal{K}_a ,

Moreover, the Scott sentence ϕ_a of \mathcal{A}_a characterizes the cardinal $\beth_{|a|}$, where |a| is the ordinal with notation a. This finishes the proof!

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Based on this idea we build by computable transfinite induction on ordinal notations $a \in \mathcal{O}$ the following function *I*.

For every a, I(a) is a tuple of computable indices including the following:

- () some vocabulary τ_a
- 2 a computable representation \mathbb{K}_a for some collection K_a of finite τ_a -structures

 \bigcirc the atomic diagram of \mathcal{A}_a , where this is a Fraïssé limit of \mathcal{K}_a ,

Moreover, the Scott sentence ϕ_a of \mathcal{A}_a characterizes the cardinal $\beth_{|a|}$, where |a| is the ordinal with notation a. This finishes the proof!

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Based on this idea we build by computable transfinite induction on ordinal notations $a \in O$ the following function *I*.

For every a, I(a) is a tuple of computable indices including the following:

- () some vocabulary τ_a
- 2 a computable representation \mathbb{K}_a for some collection K_a of finite τ_a -structures

3 the atomic diagram of A_a , where this is a Fraïssé limit of K_a , Moreover, the Scott sentence ϕ_a of A_a characterizes the cardinal $\beth_{|a|}$, where |a| is the ordinal with notation a. This finishes the proof!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Based on this idea we build by computable transfinite induction on ordinal notations $a \in O$ the following function *I*.

For every a, I(a) is a tuple of computable indices including the following:

- () some vocabulary τ_a
- 2 a computable representation \mathbb{K}_a for some collection K_a of finite τ_a -structures

3 the atomic diagram of A_a , where this is a Fraïssé limit of K_a , Moreover, the Scott sentence ϕ_a of A_a characterizes the cardinal $\beth_{|a|}$, where |a| is the ordinal with notation a. This finishes the proof!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thank you!

- Copy of these slides will be available at http://souldatosresearch.wordpress.com/
- Questions?

・ロト ・四ト ・ヨト ・ヨト

э

- Thank you!
- Copy of these slides will be available at http://souldatosresearch.wordpress.com/
- Questions?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- Thank you!
- Copy of these slides will be available at http://souldatosresearch.wordpress.com/
- Questions?

< 同 > < 三 > < 三 >