

I. Souldatos

I. Souldatos

Non- Absoluteness of Amalgamation and Joint-Embedding

ASL Annual Meeting May 22nd, 2019

Ioannis (Yiannis) Souldatos

Spectra

Non-Absoluteness of AP and JEP

Souldatos

Definition

Let ϕ be an $\mathcal{L}_{\omega_1,\omega}$ -sentence.

- $ME(\kappa)$ (model-existence) is short for " ϕ has a model of size κ "
- AP(κ) (amalgamation) is short for "ME(κ) + the models of φ of size κ satisfy amalgamation"
- JEP(κ) (joint embedding) is short for "ME(κ) + the models of φ of size κ satisfy joint embedding"

• AP-Spec
$$(\phi) = \{\kappa | AP(\kappa)\}$$

• JEP-Spec
$$(\phi) = \{\kappa | JEP(\kappa)\}$$

I. Souldatos

Main Questions

- **1** Is $AP/JEP(\kappa)$ absolute (for transitive models of ZFC)?
- (Baldwin) Is it possible for AP/JEP to hold-fail-hold-fail-... infinitely often?

Absoluteness of Model Existence Non-By Shoenfield's absoluteness, $ME(\aleph_0)$ is absolute. Absoluteness of AP and JEP Theorem (S.Friedman, Hyttinen, Koerwien) Souldatos **1** Model-existence in \aleph_1 is absolute. 2 Model-existence in \aleph_{α} , $1 < \alpha$, is **not absolute**. The second part of the theorem can be proved by manipulating the size of the continuum. Theorem (Milovich, S.) Assuming a Mahlo cardinal, model-existence in \aleph_{α} , $1 < \alpha < \omega_1$, is **not absolute** even for models of ZFC+GCH. Theorem (Grossberg-Shelah) Model-existence in any cardinal $\geq \beth_{\omega_1}$ is absolute.

I. Souldatos

Based on the (non-) absoluteness results for model-existence, we have the following questions.

- Is $JEP/AP(\aleph_0)$ absolute? Yes, by Shoenfield's absoluteness
- Is JEP/AP(ℵ₁) absolute? This is open.
- Is JEP/AP non-absolute for all ℵ_α, 1 < α? Yes, by manipulating the continuum.
- Assuming GCH, is JEP/AP non-absolute for all ℵ_α, 1 < α < ω₁? Mainly open. Yes, for AP and 1 < α < ω.
- Is JEP/AP(κ) absolute for κ ≥ ⊐_{ω1}? Open for AP. "No" for JEP and κ limit cardinal less than the first measurable.
 "Yes" for κ ≥ the first measurable.

Aronszajn Trees

Non-Absoluteness of AP and JEP

l. Souldatos

Definition

- A κ -tree is a tree of height κ such that all levels have size less than κ .
- A κ -Aronszajn tree is a κ -tree with no branch of length κ .
- A κ⁺-tree is special if it is the union of κ-many of its antichains.
- $=^*$ means equality of sets modulo a finite set.
- A tree of functions is *coherent* if for every s, t with dom(s) = dom(t), s =* t.

I. Souldatos

A drawback in working with $\mathcal{L}_{\omega_1,\omega}$ is that we can not characterize well-orderings. So, instead of working with (well-founded) trees, we have to work with *pseudo-trees*.

Definition

A *pseudotree* is a partial ordered set T such that each set of the form $\downarrow x = \{y | y < \tau x\}$ is linearly ordered.

l. Souldatos

Theorem (Milovich, S.)

Given $1 \leq \alpha < \omega_1$, there is an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ_α satisfying the following.

- There is no model of ϕ_{α} of size greater than \aleph_{α} .
- If there is a coherent special ℵ_β-Aronszajn tree for each β < α, then φ_α has a model of size ℵ_α.
- **3** After collapsing a Mahlo to \aleph_2 , ϕ_α has no model of size \aleph_2 .

I. Souldatos

Consider the collection of all models of ϕ_{α} with the substructure relation.

Theorem (Milovich, S.)

- Let $2 \le \alpha < \omega$. If there are models of ϕ_{α} of size \aleph_{α} , then AP-Spec $(\phi_{\alpha}) = {\aleph_{\alpha}}$. Otherwise AP-Spec (ϕ_{α}) is empty.
- Let ω ≤ α < ω₁. The amalgamation spectrum of φ_α is empty.

Corollary

The following statements are **not absolute** for transitive models of ZFC+GCH.

(a) AP-Spec(ϕ) is empty.

(b) For finite $n \geq 2$, $AP(\aleph_n)$.

The question for \aleph_1 -amalgamation remains open.

I. Souldatos

Theorem (W.Boney, S.)

Let μ denote be the first measurable. There exists some Abstract Elementary Class (\mathbf{K}, \prec) where \mathbf{K} is the collection of all models of a certain $\mathcal{L}_{\omega_1,\omega}$ -sentence and $A \prec B$ if $A \subset B$ and A, B "agree on finite sets" (low level complexity formula(s)), such that

• $JEP(\aleph_0)$ holds.

2 JEP(λ) fails for all $\aleph_1 \leq \lambda < \beth_{\omega}$.

 $\textbf{0} \quad \text{If } \kappa < \mu \text{ and } \kappa \text{ is a strong limit , then}$

- (i) $JEP(\kappa)$ holds, but
- (ii) JEP(λ) fails, for all $\kappa^{<\kappa} \leq \lambda < \beth_{\omega}(\kappa)$.

• If $\kappa \geq \mu$, then JEP(κ) holds.

This is the first example where JEP holds-fails-holds-fails-... infinitely often.

I. Souldatos

Theorem (W.Boney, S.)

Assume GCH. Given a club C on the first measurable μ , there is a generic extension V[G] that preserves cardinalities and cofinalities, μ remains a measurable cardinal, and K satisfies JEP(κ) iff $\kappa \in \lim C$ or $\kappa \ge \mu$.

Corollary

Let μ be the first measurable and let κ be a limit cardinal less than μ . Then JEP(κ) is not absolute.

Baldwin-Shelah proved that if $\kappa \ge \mu$, then JEP(κ) always holds and therefore, it is absolute.

Note: $\mathcal{B} \leq 2^{\aleph_1}$.

Souldatos

Manipulating the size of Kurepa trees we can produce a variety of consistency result.

Theorem (Sinapova, S.)

There is an $\mathcal{L}_{\omega_1,\omega}$ -sentence ϕ for which it is consistent that

• AP-Spec
$$(\phi) = [\aleph_1, 2^{\aleph_0}];$$

- CH (or \neg CH) + "2^{\aleph_1} is a regular cardinal greater than \aleph_2 " + "AP-Spec(ϕ) = [$\aleph_1, 2^{\aleph_1}$]";
- $2^{\aleph_0} < \aleph_{\omega_1} + ``AP-Spec(\phi) = [\aleph_1, \aleph_{\omega_1}];$ and

•
$$2^{\aleph_0} < 2^{\aleph_1} + "2^{\aleph_1}$$
 is weakly inaccessible" +
"AP-Spec(ϕ) = [$\aleph_1, 2^{\aleph_1}$).

I. Souldatos

Corollary

- (a) Let $\aleph_2 \leq \kappa \leq 2^{\aleph_1}$ and κ is a regular cardinal. Then $AP(\kappa)$ is not absolute for models of ZFC+CH.
- (b) It is not absolute for models of ZFC+GCH that AP-Spec(ϕ) is right-closed/open.

I. Souldatos

Open Questions

- Given a subset X of the cardinals, is there some φ, X=AP-Spec(φ)? Same question, but X=JEP-Spec(φ).
- Which specific subsets of the cardinals are not AP/JEP spectra?
- Are there two transitive models of ZFC V ⊂ W and some φ ∈ (L_{ω1,ω})^V such that V, W agree on "φ has models of size ℵ₂", but disagree on "the models of φ satisfy AP(ℵ₂)"?

References

I. Souldatos

• Thank you!

- Copy of these slides can be found at http://souldatosresearch.wordpress.com/
- Questions?